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We develop a nonequilibrium mode-coupling theory for uniformly sheared systems starting from micro-
scopic, thermostatted Sllod equations of motion. Our theory aims at describing stationary-state properties
including rheological ones of sheared systems, and this is accomplished via two steps. First, a set of self-
consistent equations is formulated based on the projection-operator formalism and on the mode-coupling
approach for the transient density correlators which measure the correlations between the density fluctuations
in the initial equilibrium state and the ones at later times after the shearing force is turned on. The transient
time-correlation function formalism is then used which, combined with the mode-coupling approximation,
expresses stationary-state properties in terms of the transient density correlators. A detailed comparison of our
theory is also presented with the related mode-coupling theory which is based on the Smoluchowski equation
for Brownian particles under stationary shearing.
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I. INTRODUCTION

Nonlinear rheological behavior of glassy materials under
stationary shearing has attracted considerable attention in re-
cent years since it provides additional insight into the physics
of glass transition �1–8�. For such systems driven far from
equilibrium, the shear rate should be regarded as a relevant
control parameter rather than as a small perturbation �9�. In
this paper, we develop a nonequilibrium statistical mechani-
cal theory for glass-forming systems in which the shear rate
as well as temperature and density can be handled as external
control parameters. This will be done by extending the
projection-operator formalism �10� and the mode-coupling
theory �MCT� �11� to nonequilibrium systems.

MCT has been known as the most successful microscopic
theory for the glass transition. Indeed, extensive tests of the
theoretical predictions carried out so far against experimental
data and computer-simulation results suggest that the theory
deals properly with some essential features of glass-forming
systems �12,13�. It is therefore natural that extensions of
MCT have been attempted to stationary sheared systems.

At present there exist two different approaches in such
nonequilibrium extensions of MCT: one based on steady-
state fluctuations �14,15� and the other based on the transient
time-correlation function �TTCF� formalism �16,17�. In the
former approach, basic objects are the steady-state density
correlators defined with fluctuations around the stationary
state. Rheological properties such as the shear stress are then
expressed within the mode-coupling approximation in terms
of these steady-state correlators. With the same spirit as
MCT for quiescent systems �11�, the structure factor Sq

SS of
the stationary state, which now depends on the shear rate as
well as on the wave “vector” q, enters as input into the
equations describing the dynamics. At first sight, such an
approach looks quite reasonable, but in fact it possesses a
conceptual problem. For example, the following exact rela-
tion holds between the interaction part of the steady-state

shear stress �SS
int and the steady-state pair-correlation function

gSS�r�

�SS
int =

�2

2
� drgSS�r�

xy

r

du�r�
dr

�1�

for a uniform shear with velocity along the x axis and its
gradient along the y axis �18�. Here � denotes the average
number density and u�r� the pair-interaction potential. Since
Sq

SS is related to the Fourier transform of gSS�r�, Eq. �1� states
that Sq

SS and �SS
int should be handled on an equal footing, but

this aspect is missing in the steady-state fluctuations ap-
proach of Refs. �14,15�, where Sq

SS is treated as the input
while �SS

int is the output. In addition, it is assumed in Ref. �14�
that the fluctuation-dissipation theorem �FDT� holds also in
the nonequilibrium stationary state. The use of such an as-
sumption is unjustified since the violations of the FDT have
been reported in the computer-simulation study of sheared
systems �4�.

On the other hand, no such problems arise in the theory
developed by Fuchs and Cates �FC� �16,17� which is based
on the TTCF formalism �19�. Starting from the Smolu-
chowski equation for interacting Brownian particles under
stationary shearing, the FC theory aims at describing steady-
state properties via two steps: first, the MCT equations for
the transient density correlators—the correlators between the
density fluctuations in the equilibrium starting state and the
ones at later times after the shearing force is turned on—are
formulated, and then the TTCF formalism is used which,
combined with the mode-coupling approximation, expresses
stationary-state properties in terms of these transient correla-
tors. In this approach, only equilibrium static structure factor
is required as input, whereas the steady-state structure factor
Sq

SS as well as the shear stress �SS
int are the output of the

theory. Thus, the aforementioned conceptual problem in
Refs. �14,15� does not apply here. Furthermore, it is in prin-
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ciple possible using the FC theory to investigate the viola-
tions of the FDT, although this issue has not yet been ad-
dressed.

It is expected on physical grounds that the microscopic
dynamics does not matter as far as the long-time glassy dy-
namics is concerned. Indeed, it was argued that the equilib-
rium MCT leads to the same glass transition scenario for
both Newtonian and Brownian microscopic dynamics
�11,12,20�, and this was confirmed by computer-simulation
studies �21,22�. However, it is not a priori obvious whether
such an equivalent long-time dynamics holds true also for
nonequilibrium sheared systems.

In this paper, we develop a nonequilibrium MCT starting
from the Sllod equations �19�—Newtonian equations of mo-
tion under stationary shearing—which have been widely
adopted in simulation studies of homogeneously sheared sys-
tems �see, e.g., Refs. �4,23��. Our theory follows the FC for-
mulation in that the MCT equations for the transient density
correlators are derived first, and then the TTCF formalism is
used for describing stationary-state properties. However, we
found that, although it is not difficult to adapt the FC formu-
lation in Refs. �16,17� to the Sllod equations at the formal
level, the resulting equations are too cumbersome to be use-
ful in practice. We therefore developed an alternative formu-
lation to be presented in the following. It is found that a new
memory kernel enters into our nonequilibrium MCT equa-
tions reflecting the non-Hermitian nature of the relevant
Liouville operator, which is absent in the FC theory formu-
lated with the Brownian microscopic dynamics. In what cir-
cumstances this additional memory kernel from our theory
matters is an open question. We shall elaborate on this at the
end of the paper.

The paper is organized as follows. In Sec. II, we derive
exact microscopic equations and relations for systems sub-
jected to stationary shearing. These exact results serve a ba-
sis for the development of our nonequilibrium MCT. We will
then derive a set of self-consistent equations for the transient
density correlators based on the projection-operator formal-
ism �Sec. III� and on the mode-coupling approach �Sec. IV�.
It is then described in Sec. V how the steady-state properties
can be evaluated within the mode-coupling approximation
based on the knowledge of the transient density correlators.
The paper is summarized in Sec. VI, where a detailed com-
parison of our theory is also presented with the FC theory.
Appendix A is devoted to a summary of miscellaneous ma-
terials which are necessary in the main text, and to various
technical manipulations in the derivations of some equations.
Appendix B describes details of the isotropic approximation
which is useful in practical applications of our theory to sys-
tems where anisotropy in the density fluctuations is small.

II. MICROSCOPIC STARTING POINTS

In this section, we derive exact microscopic equations and
relations subjected to stationary shearing along with thermo-
stat. These exact results serve a basis for developing a non-
equilibrium MCT for sheared systems to be presented in later
sections.

A. Sllod equations of motion

We shall consider a system of N atoms of mass m in a
volume V subjected to stationary shearing characterized by
the shear-rate tensor �. For a simple uniform shear with ve-
locity along the x axis and its gradient along the y axis,
which we consider throughout this paper, the shear-rate ten-
sor is ���= �̇��x��y with �̇ denoting the strain rate. It is
postulated that the applied shear induces a homogeneous
streaming-velocity profile u�r�=� ·r at position r, assuming
that no spontaneous symmetry breaking takes place. New-
tonian equations of motion describing such a homogeneously
sheared system are the thermostatted Sllod equations �19�

ṙi =
pi

m
+ � · ri, �2a�

ṗi = Fi − � · pi − �pi. �2b�

Here ri and pi refer to the position and momentum of the ith
particle, Fi=−�U /�ri with the total interaction potential U is
the conservative force exerted on the ith particle by other
particles, and �pi is the thermostatting term which prevents
the system from heating up due to the work done on it by the
shearing force. The momenta �pi�, referred to as the Sllod
momenta, are peculiar with respect to the streaming velocity
u�ri�=� ·ri at the particle position ri, and satisfy �ipi=0.

The thermostatting multiplier � controls the kinetic tem-
perature or some other quantity such as the internal energy.
There exist various types of thermostats—stochastic or de-
terministic and reversible or irreversible—considered in the
literature. Among them, the Gaussian isokinetic thermostat
has acquired a respected status and a special importance �19�.
However, from a fundamental point of view, there is no
privileged thermostat, and one should not attribute a funda-
mental role to special assumptions about such models since
they simply describe various ways to take out energy from
the system. Indeed, it has been conjectured that different
thermostats may lead to the same steady-state properties, in
the usual sense of the macroscopic equivalence of equilib-
rium ensembles �24�. Although no proof is yet available, it is
at least reasonable to expect that steady-state properties do
not significantly depend on the types of the thermostats, and
this has been tacitly assumed in simulation studies where
various models have been used as practical means to control
the temperature.

In the present work, we shall adopt a constant-� thermo-
stat in which the multiplier � can be regarded as a “friction”
constant. As we will see later, this thermostat greatly simpli-
fies the equations to be handled compared, e.g., to the corre-
sponding equations under the Gaussian isokinetic thermostat
whose multiplier �G reads �19�

�G = �
i

pi · �Fi − � · pi�	�
i

pi
2. �3�

How the steady-state temperature can be controlled with the
constant-� model will be discussed in Sec. II G.
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B. The Liouville equation

For nonequilibrium systems described by the Sllod equa-
tions, the form of the Liouville equation commonly used for
Hamiltonian systems should be properly generalized to take
into account the effect of phase-space compression �19�. The
Liouville equation for the nonequilibrium phase-space distri-
bution function f�� , t�, where �= �rN ,pN� stands for a phase-
space point, is given by

�f��,t�
�t

= − 
�̇ ·
�

��
+ ����� f��,t� � − iL†f��,t� . �4�

The operator iL† is called the f Liouvillean, and ���� de-
fined by

���� �
�

��
· �̇ �5�

is referred to as the phase-space compression factor. For the
Sllod equations �2� with constant �, one obtains

���� = �
i
 �

�ri
· ṙi +

�

�pi
· ṗi� = − 3N� . �6�

The formal solution to the Liouville equation �4� reads

f��,t� = exp�− iL†t�f��,0� , �7�

where exp�−iL†t� is called the f propagator.
The time evolution of phase variables, which by definition

do not depend on time explicitly and whose time dependence
comes solely from that of the phase �, is determined by

d

dt
A��� = �̇ ·

�

��
A��� � iLA��� . �8�

The operator iL is referred to as the p Liouvillean. The for-
mal solution to this equation can be written in terms of the p
propagator exp�iLt� as

A��,t� = exp�iLt�A��� . �9�

Let us summarize here for later use relations between f
and p Liouvilleans and corresponding propagators. It follows
from Eqs. �4� and �8� that

iL†��� = iL��� + ���� . �10�

One can show that iL and iL† are adjoint operators, and this
is why the notation iL† is used for the f Liouvillean:

� d��iLA����B��� = −� d�A����iL†B���� . �11�

This property can be proved from the integration by parts.
By a repeated use of this property, the following relation for
the propagators can be derived:

� d��eiLtA����B��� =� d�A����e−iL†tB���� . �12�

If the phase-space compression factor ���� is identically
zero, then iL†= iL holds, and the Liouvillean becomes self-
adjoint, or Hermitian. In general, this is not the case for
nonequilibrium systems.

C. Nonequilibrium distribution function

Let us consider an equilibrium system of temperature T to
which a constant shear rate �̇ is applied at time t=0, and
thereafter the system evolves according to the Sllod equa-
tions �2�. The p Liouvillean is given by

iL = �iL0 �t 	 0� ,

iL0 + iL�̇ + iL� �t 
 0� .
� �13a�

Here, an unperturbed adiabatic or quiescent part �iL0�, a
shear part �iL�̇�, and a thermostat part �iL�� are, respectively,
given by

iL0 = �
i

pi

m
·

�

�ri
+ Fi ·

�

�pi
� , �13b�

iL�̇ = �
i

�� · ri� ·

�

�ri
− �� · pi� ·

�

�pi
� , �13c�

iL� = �
i

�− �pi� ·
�

�pi
. �13d�

Since the phase-space distribution function at t=0 coincides
with the equilibrium one, which we choose to be the canoni-
cal distribution

feq��� � f��,0� =
1

Z
e−�H0���, Z =� d�e−�H0���,

�14�

where ��1 /kBT with kB denoting Boltzmann’s constant and
H0��ipi

2 /2m+U, a formal solution to the Liouville equa-
tion �4� for t
0 is given by

f��,t� = e−iL†t feq��� . �15�

With the identity

e−iL†t = 1 + �
0

t

dse−iL†s�− iL†� , �16�

whose validity can easily be verified by differentiation with
respect to t, Eq. �15� can be expressed as

f��,t� = feq��� + �
0

t

dse−iL†s�− iL†�feq��� . �17�

Since iL0feq���=0, we get from Eqs. �6�, �10�, and �13a�–
�13d�

iL†feq��� = iL�̇feq��� + iL�feq��� − 3N�feq��� . �18�

The first term in this expression is given by

iL�̇feq��� = ��
i

�� · ri� · Fi + �� · pi� ·

pi

m
� feq���

= ��:�feq��� =
�̇

kBT
feq����xy . �19�

Here � :����,�������, and � denotes the stress tensor
whose elements are
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��� = �
i

�pi
�pi

�/m + ri
�Fi

�� ��,� = x,y,z� �20�

and in the final equality of Eq. �19� we used the specific form
���= �̇��x��y for the shear-rate tensor and the symmetry
���=��� of the stress tensor �see Appendix A 1�. The second
term in Eq. �18� is given by

iL�feq��� =
2�

kBT
feq���K��� �21�

in terms of the kinetic energy K�����ipi
2 /2m. We therefore

obtain

iL†feq��� =
�̇

kBT
feq����xy��� +

2�

kBT
feq����K��� , �22�

where we have introduced the kinetic energy fluctuation
�K��� defined as

�K��� � K��� −
3

2
NkBT . �23�

Substitution of Eq. �22� into Eq. �17� then yields

f��,t� = feq��� −
�̇

kBT
�

0

t

dse−iL†s�feq����xy����

−
2�

kBT
�

0

t

dse−iL†s�feq����K���� . �24�

This expression for the nonequilibrium phase-space distribu-
tion function plays a fundamental role in the following. No-
tice that the last term in this expression vanishes if the
Gaussian isokinetic thermostat �see Eq. �3�� is used for con-
straining �K��� to zero.

D. Transient time-correlation function formalism

In contrast to equilibrium quantities, the nonequilibrium
ensemble average �A�t�� of a phase variable A depends ex-
plicitly on the time t past since the start of shearing. Simi-
larly, the time-correlation function �A�t+�B�t�*� depends
not only on the time difference  but also on t. Using the
nonequilibrium phase-space distribution function f�� , t�,
�A�t��, and �A�t+�B�t�*� can be expressed as

�A�t�� =� d�f��,0�A�t� =� d�f��,t�A�0� , �25�

�A�t + �B�t�*� =� d�f��,0�A�t + �B�t�*

=� d�f��,t�A��B�0�*. �26�

The two representations in terms of f�� ,0� or f�� , t� are
equivalent because of the relation �12�. Hereafter, we shall
reserve the notation �¯� for representing the averaging over
the initial canonical distribution function f�� ,0�= feq���:

�¯� � � d�feq��� ¯ . �27�

It should be remembered, however, that the dynamics inside
the brackets �¯� is governed by the thermostatted Sllod
equations, and only averages such as �A�0�� and �A�0�B�0�*�
coincide with equilibrium quantities.

Substituting Eq. �24� into Eqs. �25� and �26� and then
using Eq. �12�, one obtains

�A�t�� = �A�0�� −
�̇

kBT
�

0

t

ds�A�s��xy�0��

−
2�

kBT
�

0

t

ds�A�s��K�0�� , �28�

�A�t + �B�t�*� = �A��B�0�*�

−
�̇

kBT
�

0

t

ds�A�s + �B�s�*�xy�0��

−
2�

kBT
�

0

t

ds�A�s + �B�s�*�K�0�� .

�29�

The expression �28� relates the nonequilibrium value of a
phase variable A at time t to the integral of transient time-
correlation function �TTCF� �A�s��xy�0��—the correlation
between �xy in the initial equilibrium state �xy�0� and A at
time s after the shearing force is turned on—and another
integral of TTCF �A�s��K�0�� formed with �K�0�. Equation
�29� is a generalization of this TTCF expression to the time-
correlation function.

The system is said to be in a nonequilibrium steady state
if the ensemble averages of all phase variables become time
independent. Let us notice that the long-time limit of Eq.
�28� becomes constant if the system displays mixing �25�.
This feature can be shown by taking a time derivative of Eq.
�28�:

d

dt
�A�t�� = −

�̇

kBT
�A�t��xy�0�� −

2�

kBT
�A�t��K�0�� . �30�

If the system displays mixing �25�, then all the long-time
correlations between phase variables vanish. We therefore
obtain for t→�

d

dt
�A�t�� → −

�̇

kBT
�A�t����xy�0�� −

2�

kBT
�A�t����K�0�� = 0,

�31�

since the equilibrium ensemble averages ��xy�0�� and
��K�0�� are zero �see Eqs. �A7� and �23��. This indicates that
the long-time steady state average of an arbitrary phase vari-
able becomes constant, i.e.,

lim
t→�

�A�t�� = �A�SS, �32�

where the steady-state average, denoted by �¯�SS hereafter,
is obtained from the t→� limit of Eq. �28�:
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�A�SS = �A�0�� −
�̇

kBT
�

0

�

ds�A�s��xy�0��

−
2�

kBT
�

0

�

ds�A�s��K�0�� . �33�

Similarly, the t→� limit of �A�t+�B�t�*� becomes indepen-
dent of t since the time derivative of Eq. �29�

d

dt
�A�t + �B�t�*� = −

�̇

kBT
�A�t + �B�t�*�xy�0��

−
2�

kBT
�A�t + �B�t�*�K�0�� �34�

becomes zero for t→� if the system exhibits mixing. The
steady-state time-correlation function defined as

�A��B*�SS � lim
t→�

�A�t + �B�t�*� �35�

is then given by

�A��B*�SS = �A��B�0�*� −
�̇

kBT
�

0

�

ds�A�s + �B�s�*�xy�0��

−
2�

kBT
�

0

�

ds�A�s + �B�s�*�K�0�� . �36�

The TTCF expressions �33� and �36�, relating the steady-
state quantities to the integrals of TTCFs, can be considered
as the generalized Green-Kubo relations �19�.

In deriving the nonequilibrium Zwanzig-Mori–type equa-
tion of motion to be presented in Sec. III, it is necessary to
know how the p-Liouvillean iL behaves inside the time-
correlation function. To this end, we first notice from Eq. �9�

d

dt
�A�t + �B�t�*� = ��iLA�t + ��B�t�*� + �A�t + ��iLB�t��*� .

�37�

Combined with Eq. �34�, this yields the desired result

�iLA�t + �B�t�*� = − �A�t + ��iLB�t��*�

−
�̇

kBT
�A�t + �B�t�*�xy�0��

−
2�

kBT
�A�t + �B�t�*�K�0�� . �38�

For systems exhibiting mixing, there holds for t→�

��iLA���B*�SS = − �A���iLB�*�SS, �39�

i.e., the p Liouvillean becomes Hermitian in the steady state.
This is expected since the time-translation symmetry is re-
covered in the stationary state.

E. Implication of translational invariance

Since we are dealing with amorphous systems, the equi-
librium distribution function feq��� is assumed to be transla-

tionally invariant and isotropic. In this subsection, it is
shown that the nonequilibrium distribution function f�� , t�
under shear becomes anisotropic, but remains translationally
invariant. We then discuss an implication of this property.
Our treatment here follows the one presented in Ref. �17�.

To this end, we shall consider global translation of all
particle positions

� → ��, where ri� = ri + a for all i , �40�

which amounts to the shift a of the coordinate origin. Under
this shift, the nonequilibrium distribution f�� , t� given in Eq.
�24� transforms to

f���,t� = feq��� −
�̇

kBT
�

0

t

dse−iL†����s�feq����xy����

−
2�

kBT
�

0

t

dse−iL†����s�feq����K���� . �41�

Here we used

feq���� = feq���, �xy���� = �xy���, �K���� = �K��� .

�42�

These hold since feq, �xy �see Eq. �A6��, and �K depend on
momenta and particle separations only. How the f propagator
transforms under �→�� is discussed in Appendix A 2 with
the result �see Eq. �A17��

e−iL†����t = e−iL†���te−a·�T·Pt with P � �
i

�

�ri
. �43�

Here �T denotes the transposed matrix of �. Because of Eq.
�42�, we have Pfeq���=0, P�xy���=0, and P�K���=0, so
that

e−iL†����s�feq����xy���� = e−iL†���s�feq����xy���� �44�

and a similar equation holds in which �xy is replaced by �K.
Therefore, the nonequilibrium distribution function f�� , t�
remains translationally invariant:

f���,t� = f��,t� . �45�

We next consider how the wave-vector-dependent phase
variable of the form

Aq��,t� = eiL���t�
i

Xi
Aq���eiq·ri, �46�

transforms under the shift of the coordinate origin. It is as-
sumed that Xi

Aq��� is a function of momenta and particle
separations only, so that Xi

Aq����=Xi
Aq���. For example,

Xi
�q =1 for density fluctuations, Xi

jq
�

= pi
� /m for current density

fluctuations to be introduced below, and Xi
�q

��

= pi
�pi

� /m
− �1 /2�� j�i�rij

�rij
� /rij

2 �Pq�rij� for the wave-vector-dependent
stress tensor �see Eq. �A4��. Using the result

eiL����t = eiL���tea·�T·Pt �47�

for the p propagator which is also derived in Appendix A 2
�see Eq. �A16��, one obtains

NONEQUILIBRIUM MODE-COUPLING THEORY FOR … PHYSICAL REVIEW E 79, 021203 �2009�

021203-5



Aq���,t� = eiL����t�
i

Xi
Aq����eiq·�ri+a�

= eiL���tea·�T·Pt�
i

Xi
Aq���eiq·�ri+a�

= ei�q+q·�t�·aAq��,t� , �48�

where we used Xi
Aq����=Xi

Aq���, PXi
Aq���=0, and

ea·�T·Pteiq·�ri+a�=eiq·�·ateiq·�ri+a�.
Since the integral over the phase space must agree for

either integration variables � or ��, there holds

�Aq�t�� =� d�feq���Aq��,t� =� d��feq����Aq���,t� .

�49�

Using feq����= feq��� and Eq. �48�, one obtains

�Aq�t�� = ei�q+q·�t�·a�Aq�t�� . �50�

This means that the nonequilibrium ensemble averages of
phase variables, including steady-state averages, are nonva-
nishing for zero wave vector only:

�Aq�t�� = �q,0�Aq=0�t�� . �51�

Similarly, there must hold for nonequilibrium time-
correlation functions

�Aq�t + �Bk�t�*� =� d�f��,t�Aq��,�Bk��,0�*

=� d��f���,t�Aq���,�Bk���,0�*.

�52�

Using Eqs. �45� and �48�, one finds

�Aq�t + �Bk�t�*� = ei�q+q·�−k�·a�Aq�t + �Bk�t�*� . �53�

This means that Aq�t+� is statistically correlated with Bk�t�*

only if k=q�� with the advected wave vector q���q
+q ·� during the time , i.e.,

�Aq�t + �Bk�t�*� = �k,q���Aq�t + �Bq���t�*� . �54�

Thus, as in equilibrium systems, a time-correlation function
characterized by a single wave vector can be defined as

Cq
AB�t + ,t� � �Aq�t + �Bq���t�*� . �55�

For the shear-rate tensor ���= �̇��x��y, the explicit expres-
sion for the advected wave vector reads

q�� = q + q · � = �qx,qy + �̇qx,qz� . �56�

Equivalently, one can introduce a time-correlation of the fol-
lowing form:

C̃q
AB�t + ,t� � �Aq�−��t + �Bq�t�*� . �57�

This also follows from Eq. �53� by noting that

q · �I + �t� = k → q = k · �I + �t�−1 = k · �I − �t� , �58�

since the shear-rate tensor satisfies � ·�=0. In this paper, we
shall mainly use the convention �55� for time-correlation

functions, and the convention �57� will be used only for the
discussion in Sec. III A. Finally, we notice for later use the
following relation for time-correlation functions involving
three phase variables:

�Aq�t + �Bq���t�*Dk�t�*� = �k,0�Aq�t + �Bq���t�*Dk=0�t�*� ,

�59�

which can be derived in the same manner as Eq. �54�.

F. Implication of spatial inversion symmetry

Let us notice that the Sllod equations �2� are also invariant
under spatial inversion �→−�, and hence, the f and p Li-
ouvilleans have even parity, iL†�−��= iL†��� and
iL�−��= iL���. Since feq���, �xy���, and �K��� also have
even parity, so does the the nonequilibrium distribution func-
tion according to Eq. �24�

f�− �,t� = f��,t� . �60�

We next consider how the wave-vector-dependent phase
variable Aq�� , t� of the form given in Eq. �46� transforms
under spatial inversion. It is assumed that Xi

Aq��� satisfies

Xi
Aq�− �� = pAXi

A−q��� = pAXi
Aq���*, �61�

where pA denotes the parity of the variable A. Three ex-
amples introduced below Eq. �46� satisfy these relations with
p�= +1, pj� =−1, and p��� = +1. Then, it follows from Eq.
�46� and iL�−��= iL��� that

Aq�− �,t� = pAA−q��,t� = pAAq��,t�*. �62�

Let us consider an implication of Eqs. �60� and �62� for
the time correlation function Cq

AB�t+ , t� defined in Eq. �55�.
Since the integral over the phase space must agree for either
� or −�, there holds

Cq
AB�t + ,t� =� d�f��,t�Aq��,�Bq����,0�*

=� d�− ��f�− �,t�Aq�− �,�Bq���− �,0�*.

�63�

Using Eqs. �60� and �62� and noting that �d�¯

=�d�−��¯ �e.g., �−�
� dxi¯→��

−�d�−xi�¯ =�−�
� dxi¯ under

xi→−xi�, one finds

Cq
AB�t + ,t� = pApBCq

AB�t + ,t�*. �64�

In particular, the autocorrelation function is real:

Cq
AA�t + ,t� = Cq

AA�t + ,t�*. �65�

G. Steady-state properties

Among various stationary-state properties, we shall spe-
cifically be interested in this paper in the steady-state shear
stress, kinetic temperature, and density fluctuations. Here we
summarize the TTCF expressions for these quantities.

The steady-state shear stress shall be defined via
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�SS � − ��xy�SS/V . �66�

Since the equilibrium ensemble average of �xy is zero,
��xy�0��=0 �see Eq. �A7��, one obtains from Eq. �33� the
following TTCF expression for �SS:

�SS =
�̇

kBTV
�

0

�

ds��xy�s��xy�0�� +
2�

kBTV
�

0

�

ds��xy�s��K�0�� .

�67�

The steady-state temperature shall be defined as

TSS �
2

3NkB
�K�SS, �68�

in terms of the kinetic energy. Let us show that TSS is con-
nected to �SS via a simple relation. To this end, we notice
that the rate of the change of the internal energy H0=K+U is
given by

Ḣ0 = �
i

 ṗi · pi

m
− ṙi · Fi� = − �̇�xy − 2�K , �69�

where the specific form ���= �̇��x��y for the shear-rate ten-
sor and Eq. �20� for the shear stress have been used in the
final equality. Since there is no internal-energy change in the

steady state, i.e., �Ḣ0�SS=0, one finds from Eqs. �66�, �68�,
and �69� that

TSS =
�̇

3kB��
�SS, �70�

where �=N /V denotes the average number density. Thus, it
suffices to know �SS to obtain TSS. This relation can also be
used to control TSS by varying the thermostatting multiplier
�. However, a self-consistent treatment is necessary in order
to set TSS to a desired value since �SS also depends on �.

In view of Eqs. �35� and �55�, the steady-state correlator
Fq

SS�t� of the density fluctuations

�q�t� � �
i

eiq·ri�t� − N�q,0 �71�

shall be defined via

Fq
SS�t� � lim

s→�

1

N
��q�s + t��q�t��s�*� . �72�

One understands from Eq. �65� that Fq
SS�t� is a real function

of time. From Eq. �36�, one obtains the following TTCF
expression for Fq

SS�t�

Fq
SS�t� = Fq�t� −

�̇

NkBT
�

0

�

ds��q�s + t��q�t��s�*�xy�0��

−
2�

NkBT
�

0

�

ds��q�s + t��q�t��s�*�K�0�� �73�

in terms of the transient density correlator defined by

Fq�t� �
1

N
��q�t��q�t��0�*� , �74�

and other transient cross correlators formed with �xy�0� and
�K�0�. As a corollary, one gets for the steady-state “static” or
equal-time structure factor Sq

SS�Fq
SS�t=0�

Sq
SS = Sq −

�̇

NkBT
�

0

�

ds��q�s��q�s�*�xy�0��

−
2�

NkBT
�

0

�

ds��q�s��q�s�*�K�0�� , �75�

where Sq=Fq�t=0� denotes the equilibrium static structure
factor. While Sq depends only on the wave-vector modulus
q= �q� reflecting the isotropy of the initial equilibrium state,
the steady-state structure factor Sq

SS also depends on the di-
rection of the wave vector due to the anisotropy of the
sheared stationary state. It is also clear from Eq. �75� that Sq

SS

should be considered as a dynamic object in the sense it is
given by the time integrals of the transient time-correlation
functions.

Finally, let us show the connection between the TTCF
expressions for the steady-state shear stress �SS and the
structure factor Sq

SS given by Eqs. �67� and �75�, respectively.
For this purpose, we first write �xy�s� appearing in the inte-
grands of Eq. �67� as �see Eq. �A6��

�xy�s� = �
i

pi
x�s�pi

y�s�
m

−
1

2�
i�j

rij
x �s�rij

y �s�
rij�s�

u�„rij�s�…

= �
i

pi
x�s�pi

y�s�
m

−
N

2
� dr

xy

r
u��r� � dq

�2��3e−iq·r
 1

N
�q�s��q�s�* − 1� ,

�76�

where we have used f�rij�=�drf�r���r−rij� and ��r−rij�
= �1 /2��3�dqe−iq·�r−rij� with rij =ri−r j in the final equality.
Substituting this into the integrands of Eq. �67�, one obtains

�SS = −
1

V��
i

pi
xpi

y

m �
SS

+
�

2
� dr

xy

r
u��r�

�� dq

�2��3e−iq·r�Sq
SS − Sq� . �77�

Here, the definition �33� for the steady-state average has been
exploited for the first term, and Eq. �75� for the steady-state
structure factor Sq

SS has been used for the second term. Notice
that �Sq

SS−Sq� in the second term can be replaced, e.g., by
�Sq

SS−1�, since isotropic terms do not survive after spatial
integral involving the anisotropic term xy. Equation �77�
simply expresses that anisotropic density fluctuations are re-
sponsible for the steady-state shear stress. Since the steady-
state pair correlation function gSS�r� is related to Sq

SS via
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�gSS�r� =� dq

�2��3e−iq·r�Sq
SS − 1� , �78�

one understands that the interaction part of Eq. �77� is
equivalent to Eq. �1�. Such an equal handling of �SS and Sq

SS

based on the TTCF formalism is expected since no approxi-
mation has yet been introduced.

In the following sections, we will first derive a set of
self-consistent equations for the transient density correlators
Fq�t� using the projection-operator formalism �Sec. III� and
the mode-coupling approach �Sec. IV�. We will then argue
that the mentioned TTCF expressions for the steady-state
properties can be evaluated within the mode-coupling ap-
proximation based on the knowledge of Fq�t� �Sec. V�. In
this way, we construct the nonequilibrium MCT for station-
ary sheared systems.

III. ZWANZIG-MORI–TYPE EQUATIONS

In this section, we derive exact Zwanzig-Mori–type equa-
tions of motion for the transient density correlator Fq�t� for a
system that is initially at equilibrium and subsequently sub-
jected to stationary shearing along with thermostat. A “stan-
dard” approach �10� for a quiescent system is that a
Zwanzig-Mori equation for a correlator �A�t�A�0�*� of some
phase variable A evolving with a time-independent p Liou-
villean is derived based on the static projection operator onto
the subspace spanned by A. As we will see below, due to the
presence of the time-dependent wave-vector advection q�t�,
this standard approach should be appropriately generalized
for sheared systems. We start our discussion by pointing this
out.

A. Difficulties in applying previous formulations

Recently, McPhie et al. �26� developed a projection-
operator formalism which generalizes the standard approach
to nonequilibrium systems and allows one to derive a
Zwanzig-Mori–type equation for a transient correlator
�A�t�A�0�*�. Their formalism is also based on the time-
independent p Liouvillean and on the static projection opera-
tor. Using the convention �57�, one can introduce the tran-
sient density correlator of the form

F̃q�t� =
1

N
��q�−t��t��q�0�*� . �79�

Thus, apparently, there seems no problem to apply the for-
malism developed in Ref. �26� by setting A�t�=�q�−t��t�.
However, �q�−t��t� is not a phase variable since its time evo-
lution is also affected by the wave-vector advection q�−t�
and its equation of motion cannot be written solely in terms
of the time-independent p Liouvillean as in Eq. �8�. Their
formalism, therefore, cannot be directly applied to derive the

equation for F̃q�t�. Nevertheless, we mention here that our
equations of motion derived below resemble those presented
in Ref. �26� in that new memory kernels enter in addition to
the one familiar in the equilibrium Zwanzig-Mori equations.

More recently, Fuchs and Cates �17� derived the Zwanzig-
Mori–type equation for Fq�t�, starting from the Smolu-

chowski equation for interacting Brownian particles under
stationary shearing. It is not difficult, at least formally, to
adapt their formulation to the Sllod equations, and we briefly
summarize its consequences here.

Because of the equivalence of the particles, the transient
density correlator Fq�t� defined in Eq. �74� can be written as

Fq�t� =
1

N
��q�t��0�*�q�t�� = ��q

s*e−iq·�·rsteiLt�q� , �80�

where �q
s �eiq·rs denotes the density of a single tagged par-

ticle �labeled s�, which is identical to the others. Hereafter,
the absence of the argument t implies that the associated
quantities are evaluated at t=0. By this trick of singling out
a particle, the motion of the collective density fluctuations �q
can be described by one, but time-dependent, p Liouvillean
iLs�t� defined via

�

�t
e−iq·�·rsteiLt � iLs�t�e−iq·�·rsteiLt. �81�

Based on the p Liouvillean iL for the Sllod equations, the
operator iLs�t� can be worked out explicitly,

iLs�t� = iL − iq · � · rs + iq · � · �ps/m�t . �82�

Integrating Eq. �81� in time, one obtains

Fq�t� = ��q
s*e+

�0
t diLs���q� . �83�

Here e+ denotes the time-ordered exponential, where earlier
times appear on the right. This expression also explains why
the formalism developed in Ref. �26�, which is based on the
time-independent p Liouvillean, cannot deal with Fq�t�.

Equation �83� can be handled by manipulations based on
the static projection operator Ps= ��q��1 /Sq���

q
s*�, and one

can derive the following exact Zwanzig-Mori–type equation
of motion for Fq�t� in the same manner as detailed in Ref.
�17�:

�

�t
Fq�t� −

1

Sq

q · � ·

�

�q
Sq�Fq�t� + �

0

t

dsKq�t,s�Fq�s� = 0.

�84a�

Here the memory kernel is given by

Kq�t,t�� = −
1

Sq
��q

s*iLs�t�Qse+

�
t�
t

diQsLs��QsQsiLs�t���q� ,

�84b�

in which Qs� I−Ps with I denoting the identity operator.
Equations �84a� and �84b� serve as the starting equations for
Brownian particles exhibiting overdamped dynamics, since
in this case the velocity entering into QsiLs�t��q is propor-
tional to the force, and hence, K�t , t�� essentially describes
the fluctuating-force correlations. Such an incorporation of
the fluctuating-force correlations is essential in developing
self-consistent equations for Fq�t�.

On the other hand, we need an additional Zwanzig-Mori–
type equation for K�t , t�� in constructing a self-consistent
theory since the time derivative of the �peculiar� momentum
is proportional to the force in the Sllod equations �2�. For
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this purpose, one needs to introduce a time-dependent pro-
jection operator onto the subspace spanned by QsiLs�t��q.
We found that the resulting equation of motion for K�t , t�� is
too cumbersome to be adopted as our starting equation. �See,
e.g., Ref. �27� for the application of the time-dependent
projection-operator formalism.�

Here we shall take an alternative route. Adopting the
original definition

Fq�t� =
1

N
��q�t��q�t��0�*� =

1

N
��eiLt�q��q�t�

* � �85�

of the transient density correlator, we will first derive an
exact continuity equation which relates Fq�t� to the transient
cross correlator

Hq
��t� =

1

N
�jq

��t��q�t��0�*� =
1

N
��eiLt jq

���q�t�
* � �86�

for �=x ,y ,z, formed with the current density fluctuations jq
�

defined by

jq
� = �

i

pi
�

m
eiq·ri. �87�

Here it is necessary to take into account all the � components
of jq

� due to the anisotropic nature of the sheared system. We
will then derive a Zwanzig-Mori–type equation of motion for
Hq

��t�, which can be done via a partial use of the static pro-
jection operator as we will see below.

B. Continuity equation

We start with the time-evolution equation for the number
density fluctuations. Since �see Eqs. �13a�–�13d��

iL�q = �iL0 + iL�̇ + iL���q = iq · jq + q · � ·
�

�q
�q, �88�

one finds the following continuity equation for the sheared
system relating the partial time derivative of �q�t�=eiLt�q to
jq
��t�=eiLt jq

�:


 �

�t
− q · � ·

�

�q
��q�t� = iq · jq�t� . �89�

On the other hand, the density fluctuation at the advected
wave vector �

q�t�
* obeys the equation


 �

�t
− q · � ·

�

�q
��q�t�

* = iq · � · �
i

��t� · rie
−iq�t�·ri = 0,

�90�

since the shear-rate tensor satisfies � ·�=0. One can readily
obtain from the above two equations that the transient den-
sity correlator Fq�t�= ��q�t��

q�t�
* � /N and the transient cross

correlator Hq
��t�= �jq

��t��
q�t�
* � /N is connected via


 �

�t
− q · � ·

�

�q
�Fq�t� = iq · Hq�t� . �91�

C. Exact equation for the transient cross correlator

We next derive an exact equation of motion for the tran-
sient cross correlator Hq

��t�. We start from

iLjq
� = �iL0 + iL�̇ + iL��jq

�

= iL0jq
� + q · � ·

�

�q
jq
� − �� · jq�� − �jq

�. �92�

One therefore gets for jq
��t�=eiLt jq


 �

�t
− q · � ·

�

�q
� jq

��t� = eiLtiL0jq
� − �� · jq�t��� − �jq

��t� .

�93�

It is straightforward to obtain from this equation and Eq. �90�
for the correlator Hq

��t�= �jq
��t��

q�t�
* � /N


 �

�t
− q · � ·

�

�q
�Hq

��t� =
1

N
��eiLtiL0jq

���q�t�
* � − �� · Hq�t���

− �Hq
��t� . �94�

It is already clear at this point that one cannot derive a closed
equation for the “longitudinal” component q ·Hq�t� alone due
to the presence of the second term on the right-hand side of
Eq. �94�. This reflects the anisotropic nature of the sheared
system. We also notice that the thermostatting multiplier �
can be taken outside of the ensemble average in the last term
of Eq. �94� since we have adopted the constant-� model. If,
for example, the Gaussian isokinetic multiplier �G were used
�see Eq. �3��, then one would have to consider an additional
equation of motion for �1 /N���eiLt�Gjq

���
q�t�
* �. Thus, a con-

siderable simplification is achieved via the adoption of the
constant-� model.

D. Projection-operator formalism

In the following, we shall apply a projection-operator for-
malism, but only to the first term on the right-hand side of
Eq. �94�. As will be shown below, this can be done via a
static projection operator, and thereby the aforementioned
difficulty connected with Eq. �84b� can be avoided. In this
way, we complete the derivation of the Zwanzig-Mori–type
equation of motion for Hq

��t�, which together with the conti-
nuity equation �91� provides our starting equations for devel-
oping a nonequilibrium MCT for transient density correla-
tors.

For this purpose, let us introduce the static projection op-
erator P onto the subspace spanned by �k and jk

� ��
=x ,y ,z�. Since ��k�

k�
* �=�k,k�NSk, �jk

�j
k�

�*�=�k,k����Nv2 with

v=�kBT /m denoting the thermal velocity, and ��kj
k�

�*�=0 �re-

member that the averaging is over the initial canonical dis-
tribution�, the projection operator P is given by

PX = �
k

�X�k
*�

1

NSk
�k + �

k
�
�

�Xjk
�*�

1

Nv2 jk
�. �95�

The complementary projection operator is defined by Q� I
−P. One can easily show that P and Q are idempotent and
Hermitian.
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The time evolution of iL0jq
� appearing in the first term on

the right-hand side of Eq. �94� shall then be separated into
parts correlated and uncorrelated with ��k , jk

��:

eiLtiL0jq
� = eiLtPiL0jq

� + eiLtQiL0jq
�. �96�

As derived in Appendix A 3, one obtains

PiL0jq
� = iq�

v2

Sq
�q, �97�

and hence, the first term on the right-hand side of Eq. �96� is
given by

eiLtPiL0jq
� = iq�

v2

Sq
eiLt�q. �98�

The second term on the right-hand side of Eq. �96� shall
be handled using the identity

eiLt = eQiLt + �
0

t

dseiL�t−s�PiLeQiLs. �99�

Applying this to QiL0jq
� and exploiting the relation eQiLtQ

=eitQ which holds due to the idempotency of the operator Q,
we obtain

eiLtQiL0jq
� = eiQLQtQiL0jq

� + �
0

t

dseiL�t−s�PiLeiQLQsQiL0jq
�.

�100�

Let us introduce

Rq
��t� � eiQLQtRq

� �101�

with

Rq
� � QiL0jq

� = iL0jq
� − iq�

v2

Sq
�q, �102�

where we have used Eq. �97�. Since Q�
q�t�
* =Qj

q�t�
�* =0, there

holds

�Rq
��t��q�t�

* � = 0 and �Rq
��t�jq�t�

�* � = 0. �103�

Thus, Rq
��t� is always uncorrelated with ��k , jk

��, and we fol-
low the usual convention to call this phase variable the ran-
dom or fluctuating force.

In terms of the fluctuating force Rq
��t�, the second term in

Eq. �100� can be expressed as

�
0

t

dseiL�t−s�PiLRq
��s� = �

0

t

ds�
k

��iLRq
��s���k

*�
1

NSk
eiL�t−s��k

+ �
0

t

ds�
k

�
�

��iLRq
��s��jk

�*�

�
1

Nv2eiL�t−s�jk
�

= �
0

t

ds��iLRq
��s���q�s�

* �

�
1

NSq�s�
eiL�t−s��q�s�

+ �
�
�

0

t

ds��iLRq
��s��jq�s�

�* �

�
1

Nv2eiL�t−s�jq�s�
� , �104�

where the last equality holds since �Rq
��s�f

k
*� is nonzero only

for k=q�s� �see Eq. �54��. We also noticed that the ensemble
averaged terms are independent of the phase and are unaf-
fected by the propagator. The evaluation of the ensemble
averaged terms in the integrands of Eq. �104� is presented in
Appendix A 4, and the results are given by

��iLRq
��s���q�s�

* � = −
�̇

kBT
�Rq

��s�Q��q�s�
* �xy��

−
2�

kBT
�Rq

��s�Q��q�s�
* �K�� , �105�

��iLRq
��s��jq�s�

�* � = − �Rq
��s�Rq�s�

�* � −
�̇

kBT
�Rq

��s�Q�jq�s�
�* �xy��

−
2�

kBT
�Rq

��s�Q�jq�s�
�* �K�� . �106�

Let us notice that Eq. �106� has been simplified due to the
adoption of the constant-� model for the thermostat �see the
comment below Eq. �A32��: otherwise, e.g., when the Gauss-
ian isokinetic thermostat is used, one has to add a term
�Rq

��s�Q��Gj
q�s�
�* �� to the right-hand side of Eq. �106�.

With Eqs. �100�–�102� and �104�–�106�, we now obtain

eiLtQiL0jq
� = Rq

��t� − �
�
�

0

t

dsMq
���s�eiL�t−s�jq�s�

�

+ �̇�
0

t

dsiLq
��s�eiL�t−s��q�s�

− �̇�
�
�

0

t

dsLq�
���s�eiL�t−s�jq�s�

�

+ ��
0

t

dsiNq
��s�eiL�t−s��q�s�

− ��
�
�

0

t

dsNq�
���s�eiL�t−s�jq�s�

� . �107�

Here we have introduced the following memory kernels:

Mq
���t� �

1

Nv2 �Rq
��t�Rq�t�

�* � , �108�

Lq
��t� � i

1

NkBTSq�t�
�Rq

��t�Q��q�t�
* �xy�� , �109�

Lq�
���t� �

m

N�kBT�2 �Rq
��t�Q�jq�t�

�* �xy�� , �110�
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Nq
��t� � i

2

NkBTSq�t�
�Rq

��t�Q��q�t�
* �K�� , �111�

Nq�
���t� �

2m

N�kBT�2 �Rq
��t�Q�jq�t�

�* �K�� . �112�

Substituting Eqs. �96�, �98�, and �107� along with Eq. �103�
into the first term on the right-hand side of Eq. �94�, we
finally obtain the following Zwanzig-Mori–type equation for
Hq

��t�:


 �

�t
− q · � ·

�

�q
�Hq

��t� = iq�

v2

Sq
Fq�t� − �� · Hq�t��� − �Hq

��t�

− �
�
�

0

t

dsMq
���s�Hq�s�

� �t − s�

+ �̇�
0

t

dsiLq
��s�Fq�s��t − s�

− �̇�
�
�

0

t

dsLq�
���s�Hq�s�

� �t − s�

+ ��
0

t

dsiNq
��s�Fq�s��t − s�

− ��
�
�

0

t

dsNq�
���s�Hq�s�

� �t − s� .

�113�

Here, we have noticed �1 /N���eiL�t−s��q�s���q�t�
* �=Fq�s��t−s�

and �1 /N���eiL�t−s�jq�s�
� ��

q�t�
* �=Hq�s�

� �t−s�. One can easily con-
firm that these are consistent with the definitions �85� and
�86�.

The memory kernel Mq
���t� describing the fluctuating

force correlations is already familiar from the equilibrium
Zwanzig-Mori equation of motion for the density correlator
�11�. The additional memory kernels Lq

��t� and Lq�
���t� are

due to couplings between the fluctuating force and the shear
stress and Nq

��t� and Nq�
���t� are associated with couplings

between the fluctuating force and temperature fluctuations.
In the following section, we introduce mode-coupling ap-
proximations for these memory kernels to obtain a set of
self-consistent equations of motion for the transient density
correlators.

IV. MODE-COUPLING APPROXIMATION

We have encountered five memory kernels in the
Zwanzig-Mori–type exact equations of motion for the tran-
sient correlators. We need to invoke approximations for these
memory kernels in order to obtain closed equations for Fq�t�.
In this section, we apply the mode-coupling approximations
�11� to these memory kernels.

The basic idea behind MCT is that the fluctuation of a
given dynamical variable decays, at intermediate and long
times, predominantly into pairs of hydrodynamic modes as-
sociated with quasiconserved dynamical variables. It is

therefore reasonable to expect that the decay of the memory
kernels at intermediate and long times is dominated by those
mode correlations which have the longest relaxation times.
The sluggishness of the structural relaxation processes in
glass-forming systems suggests that the slow decay of the
memory kernels is basically due to couplings to pair-density
modes. The simplest way to extract such a slowly decaying
part is to introduce another projection operator P2 which
projects any variable onto the subspace spanned by �k�p, i.e.,

P2X = �
k
p

�X�k
*�p

*�
1

N2SkSp
�k�p. �114�

Here we already used the static version of the factorization
approximation introduced below �see Eq. �120��. It is readily
verified that P2 is idempotent and Hermitian.

The first approximation in the mode-coupling approach
thus corresponds to replacing the propagator eiQLQt govern-
ing the time-evolution of the memory kernels by its projec-
tion on the subspace spanned by the pair-density modes
eiQLQt�P2eiQLQtP2. Under this approximation, the memory
kernel Mq

���t� defined in Eq. �108� is given by

Mq
���t� �

1

Nv2 ��P2eiQLQtP2Rq
��Rq�t�

�* �

=
1

Nv2 ��eiQLQtP2Rq
��P2Rq�t�

�* � . �115�

The expression for the projected random force P2Rq
� is de-

rived in Appendix A 5 within the convolution approximation
for triple correlations

��q�k
*�p

*� � �q,k+pNSqSkSp �116�

and is given by

P2Rq
� = − i

�v2

N �
k
p

�q,k+p�k�ck + p�cp��k�p. �117�

Here cq is the direct correlation function defined via

�cq = 1 −
1

Sq
. �118�

Substituting Eq. �117� into Eq. �115�, we obtain

Mq
���t� =

�2v2

N3 �
k
p

�
k�
p�

�q,k+p�q�t�,k�+p��k�ck + p�cp�

� �k��ck� + p��cp����e
iQLQt�k�p��

k�
* �

p�
* � . �119�

The final approximation in the mode-coupling approach is to
factorize averages of products, evolving in time with the
propagator eiQLQt, into products of averages formed with the
variables evolving with eiLt �factorization approximation�:

��eiQLQt�k�p��
k�
* �

p�
* � � ��eiLt�k��

k�
* ���eiLt�p��

p�
* �

= �k�,k�t��p�,p�t�N
2Fk�t�Fp�t� .

�120�

Here the translational invariance of the sheared system is
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taken into account �see Eq. �54��. Applying this approxima-
tion to Eq. �119�, we obtain

Mq
���t� =

�v2

2�2��3 � dk�k�ck + p�cp�

��k��t�ck�t� + p��t�cp�t��Fk�t�Fp�t� , �121�

where the wave vector p in this and the following expres-
sions for the memory kernels abbreviates p�q−k, and
should not be confused with the momentum variable.

In the absence of shear, the MCT expression �121� re-
duces to the one familiar from the equilibrium MCT �11�
describing nonlinear interactions of density fluctuations,
called the cage effect, relevant for structural slowing down.
The matrix structure as well as the wave-vector dependence
in Mq

���t� can be simplified, i.e., it can be decomposed into
longitudinal and transversal components which depend on
the modulus q= �q� only, and this is possible because of the
isotropic nature of the quiescent equilibrium system. In the
presence of shear, on the other hand, the “dephasing” of the
vertex function in Eq. �121� occurs, which reduces the non-
linear interactions, and hence, enhances the structural relax-
ation. In addition, the structure of Mq

���t� cannot be simpli-
fied in a mentioned way due to the wave-vector dependence
of the vertex function and of the transient density correlators,
which are associated with the anisotropic nature of the
sheared system.

The memory kernel Lq
��t� defined in Eq. �109� can be

handled in a similar manner under the mode-coupling ap-
proximation, and its detailed derivation is presented in Ap-
pendix A 6 with the result

Lq
��t� = −

v2

2�2��3 � dk�k�ck + p�cp�

�
 kxky�t�
k�t�

Sk�t��

Sk�t�
+

pxpy�t�
p�t�

Sp�t��

Sp�t�
�Fk�t�Fp�t� .

�122�

Here Sq���Sq /�q. It is anticipated that this memory kernel
becomes relevant only if significant anisotropy is developed
in the density fluctuations. This is because the shear stress
�xy entering into its defining equation �109�, which is re-
flected in the quantities in the second square brackets in Eq.
�122�, is intrinsically an anisotropic quantity. For example,
one finds from Eq. �122� that Lq

��0�=0 reflecting the isotropy
of the initial equilibrium state.

The other memory kernels defined in Eqs. �110�–�112� are
found to vanish under the mode-coupling approximation as
demonstrated in Appendixes A 7 and A 8:

Lq�
���t� = 0. �123�

Nq
��t� = 0, Nq�

���t� = 0. �124�

Thus, only the memory kernels Mq
���t� and Lq

��t� survive
under the mode-coupling approximation formulated with the
projection operator P2.

V. STEADY-STATE PROPERTIES

In this section, we provide the TTCF expressions for the
steady-state properties �see Sec. II G� under the mode-
coupling approximation. This enables one to obtain the
stationary-state properties based on the knowledge of the
transient density correlators Fq�t�.

A. Remarks on TTCF expressions

Let us first notice that the transient time-correlation func-
tions appearing in the TTCF expressions in Sec. II G can be
abbreviated as

GX�t� � ��eiLtX��xy�, HX�t� � ��eiLtX��K� . �125�

For example, the TTCF formed with �xy�0� in Eq. �67� is
given by ��eiLs�xy��xy�, and the one in Eq. �73� by
��eiLs��q�t��

q�t�
* ���xy�.

As discussed in Appendix A 9, the functions GX�t� and
HX�t� evolve in time within the subspace orthogonal to
��k , jk

��, i.e., there hold

GX�t� = ��eiQLQtQX�Q�xy� , �126a�

HX�t� = ��eiQLQtQX�Q�K� , �126b�

in terms of the projection operator Q complementary to P
defined in Eq. �95�. This feature is exactly the one sheared
with the memory kernels �see Eqs. �101�, �103�, and �108�–
�112��. Thus, no additional approximation than those intro-
duced in Sec. IV is necessary to deal with GX�t� and HX�t�.
The only difference here is that, since both �xy and �K are
“zero wave-vector” quantities, the second projection operator
P2 given in Eq. �114� has to be replaced by P2

0 defined via

P2
0X � �

k
0
�X�k�k

*�
1

N2Sk
2�k�k

*. �127�

We thus obtain under the first mode-coupling approximation,
in which the propagator eiQLQt is approximated by the pro-
jected one P2

0eiQLQtP2
0,

GX�t� = ��eiQLQtP2
0QX�P2

0�xy� , �128a�

HX�t� = ��eiQLQtP2
0QX�P2

0�K� . �128b�

Here we have noticed Q�xy =�xy and Q�K=�K �see Eq.
�A73��.

The evaluation of P2
0�xy is presented in Appendix A 10

with the result

P2
0�xy = −

kBT

N
�
k
0

kxky

k

Sk�

Sk
2 �k�k

*. �129�

In view of Eq. �23�, one easily understands that ��K�k�
k
*�

=0, and hence,

P2
0�K = 0. �130�

Thus, under the mode-coupling approximation, only those
contributions abbreviated as GX�t� survive in the TTCF ex-
pressions for the steady-state properties.
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B. Steady-state shear stress

With the results in the previous subsection, the TTCF ex-
pression �67� for the steady-state shear stress under the
mode-coupling approximation is given by

�SS =
�̇

kBTV
�

0

�

ds��eiQLQsP2
0�xy�P2

0�xy� . �131�

Substituting Eq. �129� into this expression yields

�SS =
kBT�̇

VN2 �
0

�

ds �
k
0

�
k�
0

kxky

k

Sk�

Sk
2

kx�ky�

k�

Sk�
�

Sk�
2

� ��eiQLQs�k�k
*��k��k�

* � . �132�

Applying the factorization approximation �120�, one gets

��eiQLQs�k�k
*��k��k�

* � � ��eiLs�k��
k�
* ���eiLs�k

*��k��

= �k�,k�s�N
2Fk�s�2, �133�

where in the final equality we have noticed that Fk�s� is a
real function of time �see Eq. �65��. This leads to the follow-
ing MCT expression for the steady-state shear stress �SS in
terms of the transient density correlators

�SS =
kBT�̇

2�2��3�
0

�

ds� dk
kx

2kyky�s�
kk�s�

Sk�Sk�s��

Sk
2Sk�s�

2 Fk�s�2.

�134�

The steady-state kinetic temperature TSS can then be ob-
tained via Eq. �70�.

C. Steady-state density fluctuations

With the remarks in Sec. V A, the TTCF expression �73�
for the steady-state density correlator Fq

SS�t� under the mode-
coupling approximation is given by

Fq
SS�t� = Fq�t� −

�̇

NkBT
�

0

�

ds��eiQLQsQ��q�t��q�t�
* ��P2

0�xy� .

�135�

Here we do not apply P2
0 to Q��q�t��

q�t�
* � since it already has

the form of the density product. Let us notice that, since
�k=0=0 �see Eq. �71�� and jk=0

� = �1 /m��ipi
�=0 �see the com-

ment below Eq. �2b��, it follows from Eq. �59� that
��q�t��

q�t�
* �

k
*�=�k,0��q�t��

q�t�
* �

k=0
* �=0 and ��q�t��

q�t�
* j

k
�*�

=�k,0��q�t��
q�t�
* j

k=0
�* �=0. One therefore obtains P��q�t��

q�t�
* �

=0 �see Eq. �95��, and hence, Q��q�t��
q�t�
* �=�q�t��

q�t�
* . Thus,

we have for the integrand of Eq. �135�

��eiQLQsQ��q�t��q�t�
* ��P2

0�xy�

= −
kBT

N
�
k
0

kxky

k

Sk�

Sk
2 ��eiQLQs�q�t��q�t�

* ��k�k
*� ,

�136�

where we have used Eq. �129�. Here we apply the factoriza-
tion approximation �see Eq. �120��

��eiQLQs�q�t��q�t�
* ��k�k

*� � ��eiLs�q�t���k
*���eiLs�q�t�

* ��k�

= �k,q�t+s�N
2Fq�t + s�Fq�t��s� ,

�137�

where in the final equality we have noticed that Fq�t��s� is a
real function of time �see Eq. �65��. This yields the following
MCT expression for the steady-state density correlator Fq

SS�t�
in terms of the transient density correlators:

Fq
SS�t� = Fq�t� + �̇�

0

�

ds
qxqy�t + s�

q�t + s�

Sq�t+s��

Sq�t+s�
2 Fq�t + s�Fq�t��s� .

�138�

As a corollary, we obtain for the steady-state structure factor
Sq

SS=Fq
SS�t=0�

Sq
SS = Sq + �̇�

0

�

ds
qxqy�s�

q�s�

Sq�s��

Sq�s�
2 Fq�s�2. �139�

Let us see the connection between �SS and Sq
SS under the

mode-coupling approximation. By comparing Eqs. �134� and
�139�, one finds

�SS =
kBT

2�2��3 � dk
kxky

k

Sk�

Sk
2 Sk

SS, �140�

where we have noticed that the isotropic term in Sk
SS does not

contribute to the integral. Thus, �SS and Sq
SS are handled on

an equal footing naturally under the mode-coupling approxi-
mation. Compared to Eq. �77�, the kinetic part is missing
here since only the interaction part is dealt with under the
mode-coupling approach. In addition, since Sk� /Sk

2=�ck� �see
Eq. �118��, the bare potential in Eq. �77� is replaced by the
“renormalized” �10� direct correlation function in Eq. �140�.
Finally, we notice that Eq. �140� can directly be derived from
Eq. �129� by approximating �SS�−�P2

0�xy�SS /V and using
the definition Sk

SS= �1 /N���k�
k
*�SS.

VI. SUMMARY AND DISCUSSION

In this paper, we developed a nonequilibrium MCT for
uniformly sheared systems starting from microscopic, ther-
mostatted Sllod equations of motion. Our theory aims at de-
scribing stationary-state properties including rheological
ones, and this is accomplished via two steps. First, a set of
self-consistent equations of motion is formulated for the
transient density correlators Fq�t� based on the projection-
operator formalism and on the mode-coupling approach,
which enables the calculation of Fq�t� provided the static
structure factor Sq of the initial equilibrium state is given as
input. The transient time-correlation function formalism is
then used which, combined with the mode-coupling approxi-
mation, expresses stationary-state properties in terms of
Fq�t�. Thereby, steady-state quantities such as the shear
stress �SS, temperature TSS, density correlators Fq

SS�t�, and
the structure factor Sq

SS can all be calculated in terms of Sq.
We also addressed how the steady-state temperature TSS can
be controlled using the constant-� model for the thermostat:
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this can be done via a self-consistent treatment of the ther-
mostatting multiplier � based on Eq. �70�. Our theory is able
to treat �SS and Sq

SS on an equal footing, which is missing in
the steady-state-fluctuations approach of Refs. �14,15�. In ad-
dition, we need not assume the validity of the fluctuation-
dissipation theorem in sheared states, which was necessary in
Ref. �14�.

The transient density correlators Fq�t� thus play a distin-
guished role in our approach. Let us collect here all the rel-
evant MCT equations for Fq�t� derived in Secs. III and IV to
highlight new features of our theory compared to the equi-
librium MCT �11� and to the nonequilibrium MCT developed
by Fuchs and Cates �FC� for sheared Brownian systems
�16,17�. The exact Zwanzig-Mori–type equations consist of
the continuity equation


 �

�t
− q · � ·

�

�q
�Fq�t� = iq · Hq�t� , �141a�

and the time-evolution equation for the transient density-
current cross correlator Hq

��t�


 �

�t
− q · � ·

�

�q
�Hq

��t� = iq�

v2

Sq
Fq�t� − �� · Hq�t��� − �Hq

��t�

− �
�
�

0

t

dsMq
���s�Hq�s�

� �t − s�

+ �̇�
0

t

dsiLq
��s�Fq�s��t − s� . �141b�

In this equation, we already omitted those memory kernels
which vanish under the mode-coupling approximation �see
Sec. IV�. The MCT expressions for the memory kernels
Mq

���t� and Lq
��t� are given by

Mq
���t� =

�v2

2�2��3 � dk�k�ck + p�cp�

��k��t�ck�t� + p��t�cp�t��Fk�t�Fp�t� , �142a�

Lq
��t� = −

v2

2�2��3 � dk�k�ck + p�cp�

�
 kxky�t�
k�t�

Sk�t��

Sk�t�
+

pxpy�t�
p�t�

Sp�t��

Sp�t�
�Fk�t�Fp�t� .

�142b�

Here p�q−k. Compared to the equilibrium MCT �11�, new
features entering here are �i� the replacement of � /�t by
�� /�t−q ·� · �� /�q��, �ii� the presence of the second �shear�
and the third �thermostat� terms on the right-hand side of Eq.
�141b�, �iii� the matrix structure of the memory kernel
Mq

���t� describing the fluctuating-force correlations which
cannot be decomposed into the longitudinal and transversal
parts, and �iv� the presence of the additional memory kernel
Lq

��t�. Furthermore, when compared with the FC theory
�16,17�, we see in addition to those rather trivial differences
reflecting the Newtonian and Brownian short-time micro-
scopic dynamics �v� the memory kernel in the FC theory

describing the fluctuating-force correlations, to be denoted as
Mq

FC�t , t��, has a different mathematical structure in that it
depends on two times t and t� after the shearing force is
turned on, while only one time enters into our Mq

���t�, and
�vi� the memory kernel corresponding to Lq

��t� is absent also
in the FC theory.

The first and second features just mentioned arise from
the shear part �iL�̇� and the thermostat part �iL�� in the p
Liouvillean for the Sllod equations �see Eqs. �13a�–�13d��,
which are absent in the p Liouvillean for quiescent systems.
The third feature reflects the anisotropic nature of the
sheared system: in the presence of shear, the longitudinal and
transversal current density fluctuations cannot be separately
handled as in isotropic systems since their cross correlators
do not vanish. In this connection, we notice that the second
term on the right-hand side of Eq. �141b�, which cannot be
expressed in terms of the � component Hq

��t� alone, also
reflects the anisotropy of the sheared system. Therefore,
without introducing any further approximation �see below�,
Eqs. �141a� and �141b� cannot be combined to yield a single
second-order integrodifferential equation for Fq�t� as in the
equilibrium MCT �11�. The fourth feature originates from the
non-Hermitian nature of the p Liouvillean describing non-
equilibrium dynamics �see Eq. �38��, i.e., the presence of the
additional memory kernel Lq

��t� is expected on general
grounds.

The fifth feature, when compared with the FC theory, is
due to different strategies employed in deriving the Zwanzig-
Mori–type equations for Fq�t�: the two-time structure in
Mq

FC�t , t�� is an exact consequence of the Zwanzig-Mori–type
equations �84a� and �84b� for Fq�t� upon which the FC
theory is based �see Ref. �17��, while the one-time structure
in our Mq

���t� follows from another exact equation �94� to
which the projection-operator formalism is applied �see Sec.
III D�. One therefore cannot judge which of the memory ker-
nels is superior at the formal level: we can only state that
ours has a simpler mathematical structure. Furthermore, both
the memory kernels Mq

���t� and Mq
FC�t , t�� under the mode-

coupling approximation describe essentially the same phys-
ics concerning the competition between the cage effect and
the shear advection of density fluctuations �see also below�.

Thus, the sixth feature mentioned above, i.e., the presence
or absence of the memory kernel Lq

��t� is the major differ-
ence between our and the FC theory. It is unlikely that this
difference originates from the different microscopic
dynamics—Newtonian or Brownian—adopted in these theo-
ries since, as we stated above, the presence of such a
memory kernel is expected on general grounds.

It is anticipated that the memory kernel Lq
��t� becomes

relevant only if significant anisotropy is developed in the
density fluctuations. This is because the shear stress �xy en-
tering into the defining equation �109� of Lq

��t� is intrinsically
an anisotropic quantity. We indeed confirmed from our pre-
liminary numerical calculations based on the MCT expres-
sion �142b� that the contribution from Lq

��t� is quite small
under the isotropic approximation for the density fluctuations
to be discussed below. It will be interesting to pursue in what
circumstances this additional memory kernel becomes im-
portant whose presence is naturally expected for nonequilib-
rium sheared systems.
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To further facilitate the comparison of our theory with the
equilibrium MCT and with the FC theory, the MCT equa-
tions �141a�, �141b�, and �142� shall be simplified using the
isotropic approximation introduced in Appendix B 1. Such a
simplifying approximation is also useful in practical applica-
tions of our theory to systems where anisotropy in the den-
sity fluctuations is small.

The MCT equations �B13�, �B19�, and �B23� derived in
Appendix B 1 under the isotropic approximation shall be
rewritten in the following form for the normalized transient
density correlators �q�t��Fq�t� /Sq:

�̈q�t� + �q
2�q�t� + ��̇q�t� + �q

2�
0

t

dsmq
iso�s��̇q̄�s��t − s�

+ �̇�q
2�

0

t

dslq
iso�s��q̄�s��t − s� = 0. �143�

Here all the functions depend on the wave-vector modulus
only; the dot denotes the partial time derivative; �q

2

�q2v2 /Sq the square of the characteristic frequency relevant
for the short-time dynamics; and q̄�s��q�1+ ��̇s�2 /3�1/2 the
modulus of the advected wave vector under the isotropic
approximation. The memory kernels, from which �q

2 is fac-
tored out following the convention in the equilibrium MCT
�11�, are given by

mq
iso�t� =� dkVq,k,p

��̇� �t��k�t��p�t� , �144a�

lq
iso�t� =� dkVq,k,p

��̇�� �t��k�t��p�t� , �144b�

with the time-dependent vertex functions

Vq,k,p
��̇� �t� =

�SqSkSp

2�2��3q4 �q · kck + q · pcp�

��q · kck̄�t� + q · pcp̄�t�� , �144c�

Vq,k,p
��̇�� �t� = −

�̇t

3�1 + ��̇t�2/3
SqSkSp

2�2��3q2 �q · kck + q · pcp�

� 
k
S

k̄�t�
�

Sk̄�t�
+

Sp̄�t��

Sp̄�t�
� . �144d�

The resemblance of these equations to those in the equilib-
rium MCT �11� is apparent: the major differences are the
dephasing in the vertex function Vqkp

��̇� �t� for mq
iso�t�, which

enhances the relaxation of the density fluctuations, and the
presence of the additional memory kernel lq

iso�t�.
Now, let us “derive” the MCT equations for sheared

Brownian systems, starting from Eq. �143� with the proce-
dure adopted in Ref. �28� for converting the microscopic
dynamics from Newtonian to Brownian. Assuming that the
“friction” constant � is large, the inertia term in Eq. �143�
shall be neglected. As a result, the generalized oscillator
equation �143� is specialized to generalized relaxator equa-
tion

�̇q�t� + �q�q�t� + �q�
0

t

dsmq
iso�s��̇q̄�s��t − s�

+ �̇�q�
0

t

dslq
iso�s��q̄�s��t − s� = 0, �145�

where we have defined �q��q
2 /�. This equation, combined

with Eqs. �144a� and �144c� and neglecting lq
iso�t� which is

found to be small from our preliminary calculations, is for-
mally identical to the corresponding equation in the FC
theory. �See Eqs. �4�–�6� of the second article cited in Ref.
�16�. There is a minor difference that �̇q̄�s��t−s� at the ad-
vected wave number q̄�s� enters into the third term in Eq.
�145�, while �̇q�t−s� at the wave number q appears in the
corresponding FC equation. Again, this reflects the differ-
ence of the starting Zwanzig-Mori–type equations.� In this
sense, our and the FC theory are equivalent. But, it should be
remembered that this holds only under the isotropic approxi-
mation: when anisotropy in the density fluctuations is signifi-
cant, one has to go back to Eqs. �141a�, �141b�, and �142�,
and the presence or absence of the memory kernel Lq

��t� may
have significant consequences.

Finally, we notice that our exact formulation in Secs. II
and III based on the Liouville equation can find wider appli-
cations for nonequilibrium sheared systems than the one pre-
sented in this work. For example, it has been recognized that
long-range spatial correlations emerge in sheared systems via
anisotropic couplings between density and current-density
fluctuations �29,30�. So far, most of the studies on long-range
correlations have been based on a naive extension of fluctu-
ating hydrodynamics to nonequilibrium states, and we expect
that our formulation in Secs. II and III, into which aniso-
tropic couplings between density and current-density fluctua-
tions naturally enter, provides a microscopic foundation also
for the research in this direction.
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APPENDIX A: MISCELLANEOUS MATERIALS
AND DETAILS OF SOME DERIVATIONS

This appendix is devoted to a summary of miscellaneous
materials which are necessary in the main text, and to vari-
ous technical manipulations in the derivations of some equa-
tions. In these derivations, we repeatedly use the relation

��iL0A�B*� = − �A�iL0B�*� , �A1�

which holds for the unperturbed or quiescent p Liouvillean
iL0 given in Eq. �13b�, and

�AFi
�� = − �A

�U

�ri
�� = − kBT� �A

�ri
�� , �A2�

where Fi
�=−�U /�ri

� denotes the � component of the conser-
vative force acting on the ith particle. These relations, well
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known from equilibrium statistical mechanics �10�, hold here
since the averaging �¯� in this paper is defined with the
canonical distribution function �see Eq. �27��. Also, terms
involving odd number of momentum variables vanish under
such canonical averaging.

1. Microscopic expression for stress tensor

Here we summarize the microscopic expression for the
stress tensor. For simplicity, we deal with quiescent equilib-
rium system for which the p Liouvillean is given by iL
= iL0 �see Eq. �13b��. In handling sheared systems, momenta
appearing in the following expressions should be understood
as peculiar or Sllod momenta �19�.

The wave-vector-dependent stress tensor �q
�� is intro-

duced via the continuity equation for the current density fluc-
tuation jq

�=�i�pi
� /m�exp�iq ·ri�

iL0jq
� = �

�

iq�

m
�q

��, �A3�

and is given by �10�

�q
�� = �

i

pi

�pi
�/m −

1

2�
j�i

rij
�rij

�

rij
2 Pq�rij��exp�iq · ri� .

�A4�

Here rij =ri−r j, rij = �rij�, rij
� =ri

�−rj
�, and

Pq�r� = ru��r�
1 − exp�− iq · r�

iq · r
, �A5�

in which u�r� denotes the pair-interaction potential; the total
interaction potential of the system is thus given by U
= �1 /2��i� j�iu�rij�. Obviously, �q

�� is a symmetric tensor.
The “stress tensor” referred to in the main text is the

zero-wave-vector limit of �q
��:

��� � �q=0
�� = �

i

pi

�pi
�/m −

1

2�
j�i

rij
�rij

�

rij
u��rij�� . �A6�

Exploiting the isotropy of the quiescent equilibrium system,
one can show that �10�

����� = 0 �� � �� . �A7�

The equivalence of expression �A6� and Eq. �20� in the
main text can be demonstrated as follows. Since Fi
=� j�iFij, where Fij denotes the force acting on the ith par-
ticle from the jth particle and F ji=−Fij due to Newton’s third
law, there holds

�
i

riFi =
1

2
�i

ri�
j�i

Fij + �
j

r j�
i�j

F ji� =
1

2�
i

�
j�i

rijFij .

�A8�

Expressing the force Fij in terms of the pair-interaction po-
tential as

Fij = −
�

�ri
u�rij� = −

rij

rij
u��rij� , �A9�

one obtains

�
i

ri
�Fi

� = −
1

2�
i

�
j�i

rij
�rij

�

rij
u��rij� �A10�

indicating the equivalence of Eqs. �A6� and �20�.

2. Propagators under the global translation

Here we discuss how the f and p propagators transform
under the global translation �→�� defined by Eq. �40�. The
p Liouvillean corresponding to the Sllod equations is given
by �see Eqs. �13a�–�13d��

iL��� = �
i

�pi/m + � · ri� ·

�

�ri
+ �Fi − � · pi − �pi� ·

�

�pi
�

�A11�

and it transforms under �→�� to

iL���� = iL��� + a · �T · P with P � �
i

�

�ri
, �A12�

since pi and Fi=� j�iFij �where Fij denotes the force acting
on the ith particle by the jth particle and is a function of rij
only� are not affected by �→��. Here �T denotes the trans-
pose of �.

Let us notice that, when P��� acts on a phase variable
X��� that depends on momenta �pi� and particle separations
�rij� only, there holds PX���=0. Therefore, the only term in
iL��� that does not commute with P is the second term in
Eq. �A11�, for which we have

P��
i

�� · ri� ·

�

�ri
� = �

i

�P��� · ri�� ·
�

�ri

+ �
i

�� · ri� ·

�

�ri
�P�. �A13�

We therefore obtain

P�iL��� − iL���P� = �
i

�P��� · ri�� ·
�

�ri

= �
i,j

 �

�rj
��

�,�
���ri

��� �

�ri
�

= �
i

�
�

���

�

�ri
� , �A14�

and hence, there holds

�a · �T · P�iL��� − iL����a · �T · P�

= �
�,�

a����
T �P�iL��� − iL���P��

= �
�,�

a�����
i

�
��

����

�

�ri
��

= �
�,��

a��� · �����P�� = 0,

�A15�

since the shear-rate tensor satisfies � ·�=0. Thus, iL��� and
a ·�T ·P commute. This means that f Liouvillean iL†��� and
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a ·�T ·P also commute since the difference between f and p
Liouvilleans for the Sllod equations with the constant-�
model for the thermostat is simply a constant �see Eqs. �6�
and �10��.

Using the Campbell-Baker-Hausdorff theorem which
states that eA+B=eAeB for commuting operators A and B,
one obtains from Eqs. �A12� and �A15�

eiL����t = eiL���t+a·�T·Pt = eiL���tea·�T·Pt. �A16�

Similarly, there holds for the f propagator

e−iL†����t = e−iL†���te−a·�T·Pt. �A17�

3. Derivation of Eq. (97)

Here we derive an expression for PiL0jq
�. To this end, one

needs to evaluate the ensemble averages ��iL0jq
���

k
*� and

��iL0jq
��j

k
�*� �see Eq. �95��. Using Eq. �A1� and the relation

iL0�q= iq · jq, the former is given by

��iL0jq
���k

*� = − �q,k�jq
��iL0�q�*� = �q,k�jq

��iq · jq
*��

= �q,kiq�Nv2. �A18�

For the latter, we use Eq. �A3� to obtain

��iL0jq
��jk

�*� = �q,k�
�

iq�

m
��q

��jq
�*� = 0, �A19�

since only odd number of momentum variables are involved.
It thus follows from these results and Eq. �95�

PiL0jq
� = �

k
��iL0jq

���k
*�

1

NSk
�k = iq�

v2

Sq
�q. �A20�

4. Derivation of Eqs. (105) and (106)

Using Eq. �38�, the ensemble averages in the integrands
of Eq. �104� are given by

��iLRq
��s���q�s�

* � = − �Rq
��s��iL�q�s��*� −

�̇

kBT
�Rq

��s��q�s�
* �xy�

−
2�

kBT
�Rq

��s��q�s�
* �K� , �A21�

��iLRq
��s��jq�s�

�* � = − �Rq
��s��iLjq�s�

� �*� −
�̇

kBT
�Rq

��s�jq�s�
�* �xy�

−
2�

kBT
�Rq

��s�jq�s�
�* �K� . �A22�

Since QRq
��s�=Rq

��s� �see Eqs. �101� and �102�� and the op-
erator Q is idempotent and Hermitian, the above equations
can be written as

��iLRq
��s���q�s�

* � = − �Rq
��s��QiL�q�s��*�

−
�̇

kBT
�Rq

��s�Q��q�s�
* �xy��

−
2�

kBT
�Rq

��s�Q��q�s�
* �K�� , �A23�

��iLRq
��s��jq�s�

�* � = − �Rq
��s��QiLjq�s�

� �*�

−
�̇

kBT
�Rq

��s�Q�jq�s�
�* �xy��

−
2�

kBT
�Rq

��s�Q�jq�s�
�* �K�� . �A24�

In the following, we will show that

�Rq
��s��QiL�q�s��*� = 0, �A25�

�Rq
��s��QiLjq�s�

� �*� = �Rq
��s�Rq�s�

�* � . �A26�

Substituting these results into Eqs. �A23� and �A24� yields
Eqs. �105� and �106�, respectively.

To derive Eq. �A25�, we first notice from Eq. �88�

iL�q�s� = iq�s� · jq�s� + �
j

i�q�s� · � · r j�eiq�s�·rj

= iq�s� · jq�s� + q · � ·
�

�q
�q�s�, �A27�

since � ·�=0. We therefore obtain, since Qjq�s�
� =0,

�Rq
��s��QiL�q�s��*� = �Rq

��s�
q · � ·
�

�q
�q�s�

* �� .

�A28�

On the other hand, it follows by taking a partial time deriva-
tive of the first relation in Eq. �103� that

0 =
�

�s
�Rq

��s��q�s�
* �

= �� �

�s
�eiQLQsRq

����q�s�
* � + �Rq

��s�
 �

�s
�q�s�

* ��
= ��QiLRq

��s���q�s�
* � + �Rq

��s�
q · � ·
�

�q
�q�s�

* �� ,

�A29�

where in the final equality we have used Eq. �90� for the
second term. The first term in this expression is zero since Q
is Hermitian and Q�

q�s�
* =0. We thus obtain

�Rq
��s�
q · � ·

�

�q
�q�s�

* �� = 0. �A30�

Equation �A25� then follows from Eqs. �A28� and �A30�.
We next derive Eq. �A26�. To this end, we notice from Eq.

�92� that, since � ·�=0,
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iLjq�s�
� = iL0jq�s�

� + q · � ·
�

�q
jq�s�
� − �� · jq�s��� − �jq�s�

� .

�A31�

We therefore obtain, since Qjq�s�
� =0,

�Rq
��s�Q�iLjq�s�

� �*� = �Rq
��s�Q�iL0jq�s�

� �*�

+ �Rq
��s�
q · � ·

�

�q
jq�s�
�* �� .

�A32�

Notice that the thermostat term �jq�s�
� does not contribute

here since we have adopted the constant-� model. If, e.g., the
Gaussian isokinetic thermostat is used, the contribution
�Rq

��s�Q��Gj
q�s�
�* �� cannot be discarded.

The vanishing of the second term in Eq. �A32� can be
demonstrated as follows. Using the equation

�

�s
jq�s�
�* = q · � ·

�

�q
jq�s�
�* , �A33�

a partial time derivative of the second relation in Eq. �103� is
given by

0 =
�

�s
�Rq

��s�jq�s�
�* �

= �� �

�s
�eiQLQsRq

��� jq�s�
�* � + �Rq

��s�
 �

�s
jq�s�
�* ��

= ��QiLRq
��s��jq�s�

�* � + �Rq
��s�
q · � ·

�

�q
jq�s�
�* �� .

�A34�

The first term is zero since Qj
q�s�
�* =0, and this leads to

�Rq
��s�
q · � ·

�

�q
jq�s�
�* �� = 0. �A35�

One therefore obtains from Eqs. �A32� and �A35�

�Rq
��s�Q�iLjq�s�

� �*� = �Rq
��s�Q�iL0jq�s�

� �*� = �Rq
��s�Rq�s�

�* � ,

�A36�

where in the final equality we have used Eq. �102� for the
definition of the fluctuating force. This completes the deriva-
tion of Eq. �A26�.

5. Derivation of Eq. (117)

Here we calculate the projected random force P2Rq
�:

P2Rq
� = �

k
p
�Rq

��k
*�p

*�
1

N2SkSp
�k�p. �A37�

To this end, we need to evaluate �see Eq. �102��

�Rq
��k

*�p
*� = ��iL0jq

���k
*�p

*� − iq�

v2

Sq
��q�k

*�p
*� . �A38�

Using Eq. �A1� and the relation iL0�q= iq · jq, the first term is
given by

��iL0jq
���k

*�p
*� = − �jq

��iL0�k�*�p
*� − �jq

��k
*�iL0�p�*�

= �jq
��ik · jk

*��p
*� + �jq

��k
*�ip · jp

*��

= �q,k+piNv2�k�Sp + p�Sk� . �A39�

For the second term in Eq. �A38�, we use the convolution
approximation �116�:

iq�

v2

Sq
��q�k

*�p
*� � �q,k+piNv2q�SkSp. �A40�

One thus obtains from Eqs. �A38�–�A40�

�Rq
��k

*�p
*� = − �q,k+piN�v2SkSp�k�ck + p�cp� , �A41�

in terms of the direct correlation function �see Eq. �118��.
Substituting this result into Eq. �A37� finally yields

P2Rq
� = − i

�v2

N �
k
p

�q,k+p�k�ck + p�cp��k�p. �A42�

6. Derivation of Eq. (122)

Here we derive the MCT expression for the memory ker-
nel Lq

��t� defined in Eq. �109�. Under the first mode-coupling
approximation eiQLQt�P2eiQLQtP2 �see Sec. IV�, one ob-
tains

Lq
��t� � i

1

NkBTSq�t�
��eiQLQtP2Rq

��P2Q��q�t�
* �xy�� .

�A43�

Since P2Rq
� is already given in Eq. �A42�, we only need to

consider

P2Q��q�t��xy� = �
k
p

��Q��q�t��xy���k
*�p

*�
1

N2SkSp
�k�p.

�A44�

Let us start from Q��q�t��xy�, for which we need to know
the averages ���q�t��xy��k

*� and ���q�t��xy�j
k
�*� �see Eq. �95��.

The latter is zero, ���q�t��xy�j
k
�*�=0, since this term involves

odd number of momentum variables only. For the former,
one obtains using Eq. �20�

���q�t��xy��k
*� = �k,q�t���q�t��xy�q�t�

* �

= − �k,q�t���
i,j,l

xj
�U

�yj
eiq�t�·�ri−rl�� , �A45�

since the kinetic-part contribution from �xy vanishes. Here
we have expressed Fj

y in terms of the total interaction poten-
tial, Fj

y =−�U /�yj. Applying Eq. �A2� to this equation yields
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���q�t��xy��k
*� = − �k,q�t�kBT��

i,j,l
xj

�

�yj
eiq�t�·�ri−rl��

= − �k,q�t�kBTqy�t���
i,l

i�xi − xl�eiq�t�·�ri−rl��
= − �k,q�t�NkBTqy�t�

�Sq�t�

�qx�t�

= − �k,q�t�NkBT
qxqy�t�

q
Sq�t�� , �A46�

since qx�t�=qx �see Eq. �56�� and �Sq�t� /�qx= �qx /q�Sq�t�� . We
therefore obtain from Eq. �95�

P��q�t��xy� = �
k

���q�t��xy��k
*�

1

NSk
�k = − kBT

qxqy�t�
q

Sq�t��

Sq�t�
�q�t�

�A47�

and hence

Q��q�t��xy� = �q�t��xy + kBT
qxqy�t�

q

Sq�t��

Sq�t�
�q�t�. �A48�

Now let us calculate

��Q��q�t��xy���k
*�p

*� = ���q�t��xy��k
*�p

*�

+ kBT
qxqy�t�

q

Sq�t��

Sq�t�
��q�t��k

*�p
*� .

�A49�

Using Eq. �20�, the first term is given by

���q�t��xy��k
*�p

*� = − �q�t�,k+p

���
i

eiq�t�·ri�
j

xj
�U

�yj
�

l

e−ik·rl�
m

e−ip·rm�
= − �q�t�,k+pkBT

�� �
i,j,l,m

xj
�

�yj
�eiq�t�·rie−ik·rle−ip·rm�� ,

�A50�

where we have employed Eq. �A2� in the second equality.
The calculation of this term can be continued in the same
manner as in Eq. �A46� with the result

���q�t��xy��k
*�p

*� = − �q�t�,k+pkBTky
�

�kx
+ py

�

�px
���q�t��k

*�p
*� .

�A51�

Substituting this into Eq. �A49� yields

��Q��q�t��xy���k
*�p

*� = − �q�t�,k+pkBT

��ky
�

�kx
+ py

�

�px
−

qxqy�t�
q

Sq�t��

Sq�t�
�

���q�t��k
*�p

*� . �A52�

This expression can further be simplified under the convolu-
tion approximation �116�

��q�t��k
*�p

*� � �q�t�,k+pNSq�t�SkSp. �A53�

Let us notice that, when q�t�=k+p, there holds

�

�kx
�Sq�t�SkSp� =

qx

q�t�
Sq�t�� SkSp +

kx

k
Sq�t�Sk�Sp. �A54�

Similarly, we have

�

�px
�Sq�t�SkSp� =

qx

q�t�
Sq�t�� SkSp +

px

p
Sq�t�SkSp� . �A55�

It then follows from Eqs. �A52�–�A55� that

��Q��q�t��xy���k
*�p

*� = − �q�t�,k+pNkBTSq�t�SkSp

�� kxky

k

Sk�

Sk
+

pxpy

p

Sp�

Sp
� �A56�

and substituting this into Eq. �A44� yields

P2Q��q�t��xy� = −
kBT

N
Sq�t� �

k
p
�q�t�,k+p

�� kxky

k

Sk�

Sk
+

pxpy

p

Sp�

Sp
��k�p. �A57�

Substituting Eqs. �A42� and �A57� into Eq. �A43� and
then using the factorization approximation �120�, we finally
obtain with p�q−k

Lq
��t� = −

v2

2�2��3 � dk�k�ck + p�cp�

�
 kxky�t�
k�t�

Sk�t��

Sk�t�
+

pxpy�t�
p�t�

Sp�t��

Sp�t�
�Fk�t�Fp�t� .

�A58�

7. Derivation of Eq. (123)

Here we show that the memory kernel Lq�
���t� defined in

Eq. �110� vanishes under the mode-coupling approximation
formulated with P2. We start from

Lq�
���t� �

m

N�kBT�2 ��eiQLQtP2Rq
��t��P2Q�jq�t�

�* �xy��

�A59�

under the first mode-coupling approximation eiQLQt

�P2eiQLQtP2 �see Sec. IV�. In the following, we demon-
strate ��Q�jq�t�

� �xy���k
*�

p
*�=0, i.e., P2Q�jq�t�

� �xy�=0, which
completes the derivation of Lq�

���t�=0.
Let us start from Q�jq�t�

� �xy�, for which we need to know
the averages ��jq�t�

� �xy��k
*� and ��jq�t�

� �xy�j
k
�*� �see Eq. �95��.

The former is zero, ��jq�t�
� �xy��k

*�=0, since this term involves
odd number of momentum variables only. Using Eq. �20�,
the latter reads
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��jq�t�
� �xy�jk

�*� = �k,q�t��jq�t�
� �xyjq�t�

�* �

= �k,q�t���
i

pi
�

m
eiq�t�·ri

��
j
 pj

xpj
y

m
− xj

�U

�yj
��

l

pl
�

m
e−iq�t�·rl� .

�A60�

In this equation, the kinetic-part contribution survives only
when �i� i= j= l, �=x, �=y, and �ii� i= j= l, �=y, �=x, and
the potential-term contribution survives only when i= l, �
=�. This leads to

��jq�t�
� �xy�jk

�*� = �k,q�t�Nmv4���x��y + ��y��x� , �A61�

since the potential-term contribution vanishes after applying
Eq. �A2�. We therefore obtain from Eq. �95�

P�jq�t�
� �xy� = �

k
�

�

��jq�t�
� �xy�jk

�*�
1

Nv2 jk
�

= mv2���xjq�t�
y + ��yjq�t�

x � , �A62�

and hence

Q�jq�t�
� �xy� = jq�t�

� �xy − mv2���xjq�t�
y + ��yjq�t�

x � . �A63�

Since the right-hand side of this equation involves odd num-
ber of momentum variables only, there holds

��Q�jq�t�
� �xy���k

*�p
*� = 0. �A64�

8. Derivation of Eq. (124)

Here we show that the memory kernels Nq
��t� and Nq�

���t�
defined in Eqs. �111� and �112� vanish under the mode-
coupling approximation formulated with P2. We start from
the following expressions under the approximation eiQLQt

�P2eiQLQtP2 �see Sec. IV�:

Nq
��t� � i

2

NkBTSq�t�
��eiQLQtP2Rq

��P2Q��q�t�
* �K�� ,

�A65�

Nq�
���t� �

2m

N�kBT�2 ��eiQLQtP2Rq
��P2Q�jq�t�

�* �K�� .

�A66�

In the following, we demonstrate ��Q��q�t��K���
k
*�

p
*�=0 and

��Q�jq�t�
� �K���

k
*�

p
*�=0. This means P2Q��q�t��K�=0 and

P2Q�jq�t�
� �K�=0, and hence, completes the derivation of

Nq
��t�=0 and Nq�

���t�=0.
Let us start from Q��q�t��K�, for which we need to know

the averages ���q�t��K��
k
*� and ���q�t��K�j

k
�*� �see Eq. �95��.

In view of Eq. �23�, one easily obtains

���q�t��K��k
*� = 0, ���q�t��K�jk

�*� = 0. �A67�

Thus, P��q�t��K�=0, and hence,

Q��q�t��K� = �q�t��K . �A68�

Likewise, one obtains

Q�jq�t�
� �K� = jq�t�

� �K . �A69�

It is then obvious that

��Q��q�t��K���k
*�p

*� = 0, ��Q�jq�t�
� �K���k

*�p
*� = 0.

�A70�

9. Derivation of Eqs. (126)

Here we show that the functions GX�t� and HX�t� defined
in Eq. �125� evolve in time within the subspace orthogonal to
��k , jk

��, i.e., there hold

GX�t� = ��eiLtX��xy� = ��eiQLQtQX�Q�xy� , �A71�

HX�t� = ��eiLtX��K� = ��eiQLQtQX�Q�K� , �A72�

in terms of the projection operator Q complementary to P
defined in Eq. �95�. Before embarking on the derivation, let
us notice

Q�xy = �xy and Q�K = �K . �A73�

The first relation follows from ��xy�k�=�k,0��xy�k=0�=0 �see
Eq. �71�� and ��xyj

k
�*�=0, and the second relation can be

derived in a similar manner. Thus, the presence of the opera-
tor Q in front of �xy and �K in Eqs. �A71� and �A72� is
irrelevant.

In the following, we shall deal with the function GX�t�
only, since HX�t� can be handled in a similar manner. Apply-
ing the identity

eiLt = eiLQt + �
0

t

dseiL�t−s�ieiLQs �A74�

�notice the difference in the order of operators compared to
the identity �99��, one finds

eiLtX = eiLQtX + �
0

t

dseiL�t−s�ieiLQsX = eiLQtX

+ �
k

1

NSk
�

0

t

ds��eiLQsX��k
*�eiL�t−s�iL�k

+ �
k

�
�

1

Nv2�
0

t

ds��eiLQsX�jk
�*�eiL�t−s�iLjk

�,

�A75�

where we have used the definition �95� of the operator P and
noticed that the ensemble averaged terms are independent of
the phase and are unaffected by the Liouvillean and the
propagator. Let us notice here that

iL�k → 0 and iLjk
� → 0 for k → 0. �A76�

The former is obvious in view of Eq. �88�, while the latter
can be derived on the basis of Eq. �92� by noticing iL0jk

�
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= �1 /m���ik��k
�� �see Eq. �A3�� and jk=0

� = �1 /m��ipi
�=0

�see the comment below Eq. �2b��. Equation �A76� simply
expresses the fact that the density and the current density, the
latter being defined for sheared systems in terms of the pe-
culiar momenta, are conserved variables.

Now let us consider the transient correlator ��eiLtX��xy�
formed with the “zero wave-vector” quantity �xy. The trans-
lational invariance implies that

��eiL�t−s�Ak��xy� = �k,0��eiL�t−s�Ak=0��xy� = 0, �A77�

for Ak= iL�k and iLjk
� because of Eq. �A76�. Thus, there is

no contribution to ��eiLtX��xy� from the second and third
terms on the right-hand side of Eq. �A75�, and we obtain

GX�t� = ��eiLtX��xy� = ��eiLQtX��xy� . �A78�

Since the operator Q is idempotent and Hermitian, one finds
using Eq. �A73�

GX�t� = ��QeiLQtX�Q�xy� = ��QeiQLQtQX�Q�xy�

= ��eiQLQtQX�Q�xy� , �A79�

where in the second equality we have noticed

QeiLQt = QeiQLQtQ . �A80�

This completes the derivation of Eq. �A71�, and Eq. �A72�
can be derived in a similar manner.

10. Derivation of Eq. (129)

Here we derive the expression for P2
0�xy. For this purpose,

we need to know the average ��xy�k�
k
*�. Using Eq. �20�, this

average can be written as

��xy�k�k
*� = − �

i
�xi

�U

�yi
�k�k

*� = − kBT�
i
�xi

�

�yi
��k�k

*�� ,

�A81�

where we have used Eq. �A2�. Since ��k /�yi= ikye
ik·ri and

��k /�kx= i�ixie
ik·ri, we obtain

��xy�k�k
*� = − kBT�iky��

i

xie
ik·ri��k

*�
− iky��

i

xie
−ik·ri��k��

= − kBTky�� �

�kx
�k��k

*� + ��k �

�kx
�k

*���
= − NkBT

kxky

k
Sk�. �A82�

It then follows from Eq. �127� that

P2
0�xy = �

k
0
��xy�k�k

*�
1

N2Sk
2�k�k

* = −
kBT

N
�
k
0

kxky

k

Sk�

Sk
2 �k�k

*.

�A83�

APPENDIX B: ISOTROPIC APPROXIMATION

In this appendix, we shall introduce the isotropic approxi-
mation which considerably simplifies the wave-vector-

dependent MCT equations �141a�, �141b�, and �142� for the
transient density correlators. Such a simplifying approxima-
tion is useful in practical applications of our theory to sys-
tems where anisotropy in the density fluctuations is small.
We also argue that the anisotropic nature of steady-state
quantities such as the shear stress can nevertheless be cap-
tured within such an approximation.

1. MCT equations for the transient correlators

The isotropic approximation consists of the following
three assumptions. First, it is assumed that Fq�t� depends
only on the modulus q= �q�, i.e.,

Fq�t� � Fq�t� . �B1�

Second, we introduce a corresponding approximation for the
transient cross correlator Hq

��t� formed with current density
fluctuations. Since Hq

��t� is a vector correlator whose orien-
tational dependence comes also from the dependence on �,
one cannot introduce such a simple approximation such as
Hq

��t��Hq
��t�. Instead, we assume that the following relation,

valid for isotropic quiescent systems, to hold:

Hq
��t� � − i

q�

q2

�

�t
Fq�t� . �B2�

The third assumption concerns the modulus of the advected
wave vector q�t� �see Eq. �56��:

q�t�2 = q2 + 2��̇t�qxqy + ��̇t�2qx
2. �B3�

We assume that q�t�2 can be approximated by its orienta-
tional average. This is equivalent to neglecting the aniso-
tropic term qxqy and approximating qx

2 by q2 /3 in Eq. �B3�,
leading to

q�t� � q�1 + ��̇t�2/3 � q̄�t� . �B4�

In the following, we shall see consequences of these assump-
tions.

It follows from the approximation �B2�

�

�t
Fq�t� = iq · Hq�t� , �B5�

implying that q ·Hq�t� also becomes an isotropic quantity.
Equation �B5� is consistent with Eq. �141a� under the isotro-
pic approximation. To see this, we first rewrite Eq. �141a� as

�

�t
Fq�t� = �̇qx

�

�qy
Fq�t� + iq · Hq�t� , �B6�

where the specific form ���= �̇��x��y for the shear-rate ten-
sor has been used. The application of the approximation �B1�
then yields

�

�t
Fq�t� = �̇

qxqy

q

�

�q
Fq�t� + iq · Hq�t� , �B7�

because �Fq�t� /�qy = �qy /q��Fq�t� /�q. Since now the left-
hand side depends only on the modulus q, the orientational
averaging of this expression gives Eq. �B5�.
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From a partial time derivative of Eq. �B5�, we obtain

�2

�t2Fq�t� = iq ·
�

�t
Hq�t� . �B8�

Substituting Eq. �141b� into the right-hand side yields

�2

�t2Fq�t� = �
�

iq�
q · � ·
�

�q
�Hq

��t� − q2v2

Sq
Fq�t�

− �
�

iq��� · Hq�t��� − ��iq · Hq�t��

− �
�,�
�

0

t

dsiq�Mq
���s�Hq�s�

� �t − s�

− �̇�
�
�

0

t

dsq�Lq
��s�Fq�s��t − s� . �B9�

Applying the approximation �B1� to the second and sixth
terms, Eq. �B2� to the fifth term, and Eq. �B5� to the fourth
term, we obtain

F̈q�t� = �
�

iq�
q · � ·
�

�q
�Hq

��t� − q2v2

Sq
Fq�t�

− �
�

iq��� · Hq�t��� − �Ḟq�t�

− �
0

t

ds
�
�,�

q�Mq
���s�q��s�/q�s�2�Ḟq�s��t − s�

− �̇�
0

t

ds
�
�

q�Lq
��s��Fq�s��t − s� , �B10�

where the overdot denotes the partial time derivative. The
first and third terms on the right-hand side of this equation
can be manipulated as

�
�

iq�
q · � ·
�

�q
�Hq

��t� = �
�

q · � ·

�

�q
��iq�Hq

��t�� − �
�

q · � ·

�

�q
iq��Hq

��t�

= �̇qx
�

�qy
�iq · Hq�t�� − �

�

�̇qx

�

�qy
iq��Hq

��t� = �̇qx
�

�qy
Ḟq�t� − �̇�iqxHq

y�t�� = �̇
qxqy

q

 �

�q
−

1

q
�Ḟq�t� ,

�B11�

�
�

iq��� · Hq�t��� = �
�

iq�
�
�

�̇��x��yHq
��t�� = �̇�iqxHq

y�t�� = �̇
qxqy

q2 Ḟq�t� , �B12�

in deriving which we have used the approximations �B2� and
�B5�. Both of these terms are anisotropic, and vanish after
taking the orientational average. �Remember that the left-
hand side of Eq. �B10� depends only on the modulus q.� We
therefore obtain

F̈q�t� + q2v2

Sq
Fq�t� + �Ḟq�t� + �

0

t

dsMq
iso�s�Ḟq̄�s��t − s�

+ �̇�
0

t

dsLq
iso�s�Fq̄�s��t − s� = 0, �B13�

where we have employed the approximation �B4� for the
modulus of the advected wave number in the fourth and fifth
terms, and introduced

Mq
iso�t� � �

�,�
q�Mq

���t�q��t�/q�t�2, �B14�

Lq
iso�t� � �

�

q�Lq
��t� . �B15�

Now, we are left with the kernels Mq
iso�t� and Lq

iso�t� which
still depend on the wave vector. From Eqs. �B14� and �142a�,

one gets for Mq
iso�t� under the approximations �B1� and �B4�

Mq
iso�t� =

�v2

2�2��3

1

q2�1 + ��̇t�2/3�
� dk�q · kck + q · pcp�

� �q�t� · k�t�ck̄�t� + q�t� · p�t�cp̄�t��Fk�t�Fp�t� .

�B16�

It is clear from this expression that the wave-vector depen-
dence of the this memory kernel stems from the terms
q�t� ·k�t� and q�t� ·p�t�. Using Eq. �56�, the explicit expres-
sion for the former reads

q�t� · k�t� = q · k + ��̇t��qxky + qykx� + ��̇t�2qxkx,

�B17�

and a similar expression holds for q�t� ·p�t�. With the same
spirit as in the approximation �B4�, the anisotropic terms qxky
and qykx shall be neglected, and qxkx approximated by
q ·k /3, i.e.,
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q�t� · k�t� � q · k�1 + ��̇t�2/3� . �B18�

Substituting this and a similar approximation for q�t� ·p�t�
into Eq. �B16� yields the following expression which now
depends only on the modulus q:

Mq
iso�t� =

�v2

2�2��3q2 � dk�q · kck + q · pcp�

��q · kck̄�t� + q · pcp̄�t��Fk�t�Fp�t� . �B19�

Concerning Lq
iso�t�, one gets from Eqs. �B15� and �142b�

under the approximation �B1�

Lq
iso�t� = −

v2

2�2��3 � dk�q · kck + q · pcp�

�
 kxky�t�
k�t�

Sk�t��

Sk�t�
+

pxpy�t�
p�t�

Sp�t��

Sp�t�
�Fk�t�Fp�t� .

�B20�

In this expression, the wave vector dependence comes from

kxky�t� = kxky + ��̇t�kx
2 �B21�

and pxpy�t�. Here again, the anisotropic term kxky shall be
neglected, and kx

2 approximated by k2 /3, i.e.,

kxky�t� � ��̇t�k2/3, �B22�

and pxpy�t� shall be approximated similarly. Along with the
approximation �B4�, one then obtains the following expres-
sion which now depends on the modulus q only:

Lq
iso�t� = −

v2

2�2��3

�̇t

3�1 + ��̇t�2/3
� dk�q · kck + q · pcp�

�
k
S

k̄�t�
�

Sk̄�t�
+ p

Sp̄�t��

Sp̄�t�
�Fk�t�Fp�t� . �B23�

2. Steady-state quantities

Under the isotropic approximation �B1� for the transient
density correlators and �B4� for the modulus of the advected
wave vector, the MCT expressions �138� and �139� for the
steady-state density correlator and structure factor are given
by

Fq
SS�t� = Fq�t� + �̇�

0

�

ds
�qxqy + �̇�t + s�qx

2�
q̄�t + s�

Sq̄�t+s��

Sq̄�t+s�
2

�Fq�t + s�Fq̄�t��s� , �B24�

Sq
SS = Sq + �̇�

0

�

ds
�qxqy + �̇sqx

2�
q̄�s�

Sq̄�s��

Sq̄�s�
2 Fq�s�2. �B25�

From a numerical point of view, it is not necessary to further
simplify these expressions since these steady-state quantities
are the final output of the theory rather than the ones in-
volved in the self-consistent calculations. Of course, it is

instructive to consider their averages over the orientation q̂
�q /q

Fq
SS�t� �

1

4�
� dq̂Fq

SS�t� = Fq�t�

+ �
0

�

ds
��̇�2�t + s�

3�1 + ��̇�t + s��2/3

qSq̄�t+s��

Sq̄�t+s�
2 Fq�t + s�Fq̄�t��s� ,

�B26�

Sq
SS �

1

4�
� dq̂Sq

SS = Sq + �
0

�

ds
��̇�2s

3�1 + ��̇s�2/3

qSq̄�s��

Sq̄�s�
2 Fq�s�2,

�B27�

to which only those terms in Eqs. �B24� and �B25� propor-
tional to qx

2 contribute. However, it is more informative to
regard Eqs. �B24� and �B25� as the approximate expressions
in which the anisotropic nature of the steady-state density
fluctuations is retained to the lowest order: such anisotropy
arises from the terms in Eqs. �B24� and �B25� proportional to
qxqy. Indeed, such a viewpoint is necessary to correctly un-
derstand “the isotropic approximation for the steady-state
shear stress,” adopted in Ref. �16�, which sounds contradic-
tory since the shear stress is intrinsically an anisotropic quan-
tity and vanishes under isotropic density fluctuations. We
shall come back to this point in a moment.

Under the isotropic approximations �B1� and �B4�, one
obtains from the MCT expression �134� for the steady-state
shear stress �SS

�SS =
kBT�̇

2�2��3�
0

�

ds� dk
kx

2ky�ky + �̇skx�

kk̄�s�

Sk�Sk̄�s�
�

Sk
2S

k̄�s�
2 Fk�s�2.

�B28�

One easily understands that only the term proportional to

kx
2ky

2 survives after the integration over the orientation k̂
�k /k, yielding the following expression for �SS under the
isotropic approximation

�SS =
kBT�̇

60�2�
0

�

ds
1

�1 + ��̇s�2/3
�

0

�

dkk4
Sk�Sk̄�s�

�

Sk
2S

k̄�s�
2 Fk�s�2.

�B29�

This is essentially the same expression as adopted in Ref.
�16�.

To connect such an isotropic expression for �SS with an-
isotropic density fluctuations, we rewrite the term in Eq.

�B28� which survives after the integration over k̂ in the fol-
lowing form:

�SS =
kBT

2�2��3 � dk
kxky

k

Sk�

Sk
2��̇�

0

�

ds
kxky

k̄�s�

S
k̄�s�
�

S
k̄�s�
2 Fk�s�2� .

�B30�
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The quantity in the curly brackets is exactly the aforemen-
tioned anisotropic term in Eq. �B25�. Thus, the steady-state
shear stress �SS can be handled within the isotropic
approximation since its MCT expression takes a form of the

product of two anisotropic terms, one from kxky and the
other from the anisotropic part of the density fluctuations,
which altogether behaves as an isotropic term inside the
integral.
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